ΠΕΡΙΦΕΡΕΙΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ, ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΥΠΟΔΟΜΩΝ ΔΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Π. Ε. ΚΕΦΑΛΛΗΝΙΑΣ ΤΜΗΜΑ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ

«ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ – ΚΑΠΑΝΔΡΙΤΙ»

^{ΣΙΓΜΑ ΜΕΛΕΤΩΝ Α.Ε.}, **ΣΙΓΜΑ ΜΕΛΕΤΩΝ Α.Ε.** Κορίνθου 293, Πάτρα, Τ.Κ. 262 21, Τηλ: 2610-222616, Fax: 2610-225259, e-mail : <u>info@sigmaeng.gr</u>, ΚΑΤΗΓΟΡΙΑ 21-ΤΑΞΗ Γ'

«ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ – ΚΑΠΑΝΔΡΙΤΙ»

ΠΕΡΙΕΧΟΜΕΝΑ

1. ГЕNIKA 2	2
2. ΠΕΡΙΓΡΑΦΗ ΦΑΙΝΟΜΕΝΟΥ – ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ	2
3. ΓΕΩΜΟΡΦΟΛΟΓΙΚΕΣ-ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ	1
3.1. Γεωμορφολογικές – Γεωλογικές συνθήκες ευρύτερης περιοχής	1
3.2. Τεχνικογεωλογικές συνθήκες στενής περιοχής μελέτης	3
3.3. Συνθήκες εκδήλωσης αστοχίας)
4. ΕΚΤΕΛΕΣΘΕΙΣΑ ΕΡΕΥΝΑ)
4.1 Έρευνα υπαίθρου)
4.2. Εργαστηριακές δοκιμές11	l
5. ΓΕΩΤΕΧΝΙΚΕΣ ΣΥΝΘΗΚΕΣ	L
5.1. ΤΟΜΗ ΥΠΕΔΑΦΟΥΣ	l
5.2 Στάθμη υπόγειων υδάτων	3
5.3. Αποτελέσματα εργαστηριακών δοκιμών13	3
6. ΑΞΙΟΛΟΓΗΣΗ ΓΕΩΤΕΧΝΙΚΩΝ ΣΥΝΘΗΚΩΝ	7
6.1 Τυπική εδαφική τομή	7
6.2. Γεωτεχνικές ενότητες και μηχανικά χαρακτηριστικά	3
Παράμετροι σχεδιασμού	3
ΓΕΩΤΕΧΝΙΚΟ ΠΡΟΣΟΜΟΙΩΜΑ ΣΧΕΔΙΑΣΜΟΥ	1
7. ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ	5
8. ΓΝΩΜΑΤΕΥΣΕΙΣ - ΕΛΕΓΧΟΙ ΕΥΣΤΑΘΕΙΑΣ	5
8.1. Ανάστροφες αναλύσεις	5
8.2. Περιγραφή εκδηλωθείσας κατολίσθησης26	5
8.3. Περιγραφή μέτρων αποκατάστασης26	5
8.4. Έλεγχοι ευστάθειας διατομών με μέτρα αντιστήριξης	5

1. ГЕNIKA

Η παρούσα αφορά την «ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ – ΚΑΠΑΝΔΡΙΤΙ». Για την ανάθεση της εν λόγω μελέτης, υποβλήθηκε η αρ. πρωτ. Οικ. 42007/9977/24-5-2017 πρόσκληση σε τρία μελετητικά γραφεία με πτυχίο κατηγορίας 21 (Α΄ τάξης και άνω), με τη διαδικασία ανάθεσης με διαπραγματεύσεις χωρίς προηγούμενη δημοσίευση του άρθρου 32 του Ν. 4412/16, η οποία ακολουθήθηκε λόγω του κατεπείγοντος χαρακτήρα της εν λόγω αστοχίας της Επαρχιακής Οδού Αγίου Γεωργίου - Καπανδρίτι. Με την 402-21/13-06-2017 απόφαση της Οικονομικής Επιτροπής ανατέθηκε στο γραφείο μελετών Sigma μελετών Α.Ε. η ως άνω μελέτη και στις 11-7-2017 υπογράφηκε η σχετική σύμβαση.

Αντικείμενο της μελέτης αποτελεί η διερεύνηση των γεωτεχνικών συνθηκών της αστοχίας που εκδηλώθηκε στις 19-1-2017 στην επαρχιακή οδό 18 του Νομού Κεφαλληνίας, στο τμήμα Άγιος Γεώργιος – Καπανδρίτι, σε απόσταση 200 περίπου μέτρων από τον οικισμό Άγιος Γεώργιος. Περιλαμβάνει, την επιτόπου τεχνικογεωλογική αναγνώριση και την εξέταση των συνθηκών εκδήλωσης του φαινομένου, την τοπογραφική αποτύπωση της περιοχής ενδιαφέροντος, τον προγραμματισμό των γεωτεχνικών ερευνών, την ανόρυξη 2 δειγματοληπτικών γεωτρήσεων συνολικού βάθους 40 μέτρων, την εκτέλεση των αντίστοιχων εργαστηριακών δοκιμών, τη σύνταξη έκθεσης αξιολόγησης της γεωτεχνικής έρευνας, την εκπόνηση μελέτης αποκατάστασης σταθεροποίησης κατολίσθησης με τις προτάσεις οριστικής αποκατάστασης των αστοχιών. Η ομάδα μελέτης εκπόνησης της γεωτεγνικής μελέτης, περιλαμβάνει τους εξής επιστήμονες:

	KA	ΑΤΗΓΟΡΙΑ 21 ΓΕΩΤΕΧ	κνικές μελετές
1	Κώστας Παντελόπουλος	Πολιτικός Μηχανικός	Νόμιμος Εκπρόσωπος, Συντονιστής έργου και
			εκτέλεσης Σύμβασης. Συντονιστής της ομάδας
			εκπόνησης της γεωτεχνικής μελέτης.
2	Ανδρέας Σπυρόπουλος	Δρ. Γεωλόγος	Συμμετοχή στην ομάδα εκπόνησης της
			γεωτεχνικής έρευνας (εργαστηριακές δοκιμές).
3	Βασιλική Βάκρου	Γεωλόγος	Συμμετοχή στην ομάδα εκπόνησης της
			γεωτεχνικής έρευνας (εργαστηριακές δοκιμές).

Το τεύχος της μελέτης συνοδεύουν τα ακόλουθα Παραρτήματα:

ПАРАРТНМА А ΤΟΠΟΓΡΑΦΙΚΟ ΔΙΑΓΡΑΜΜΑ-ΘΕΣΕΙΣ ΕΚΤΕΛΕΣΗΣ ΓΕΩΤΡΗΣΕΩΝ

ПАРАРТНМА В ΓΕΩΤΡΗΣΕΙΣ (ΤΟΜΗ ΥΠΕΔΑΦΟΥΣ-ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ)

ΠΑΡΑΡΤΗΜΑ Γ ΦΩΤΟΓΡΑΦΙΚΗ ΑΠΟΤΥΠΩΣΗ ΔΕΙΓΜΑΤΩΝ ΓΕΩΤΡΗΣΕΩΝ

ΑΝΑΛΥΣΕΙΣ ΕΥΣΤΑΘΕΙΑΣ ΠΑΡΑΡΤΗΜΑ Δ

ПАРАРТНМА Е ΠΡΟΜΕΤΡΗΣΕΙΣ - ΠΡΟϋΠΟΛΟΓΙΣΜΟΣ

Τέλος περιλαμβάνονται και τα εξής σχέδια:

ΣΧΕΔΙΟ ΟΡΙΖΟΝΤΙΟΓΡΑΦΙΑ ΑΠΟΚΑΤΑΣΤΑΣΗΣ ΓT1. ΠΡΟΤΕΙΝΩΜΕΝΩΝ ΕΡΓΩΝ ΚΑΤΟΛΙΣΘΗΣΗΣ (ΚΛΙΜΑΚΑ 1:250)

ΓТ2. οπλιΣμοι ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΔΙΑΤΟΜΗ -ΣΧΕΔΙΟ ΔΙΑΤΟΜΗ οπλιΣμοι -ΠΡΟΤΕΙΝΟΜΕΝΩΝ (ΚΛΙΜΑΚΑ 1:50)

2. ΠΕΡΙΓΡΑΦΗ ΦΑΙΝΟΜΕΝΟΥ – ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ

Στην Επαρχιακή Οδό υπ' αριθμ. 18, τμήμα Αγ. Γεώργιος – Καπανδρίτι, 200m περίπου από τον οικισμό του Αγ. Γεωργίου προς Καπανδρίτι, εκδηλώθηκε στις 19/01/2017 αστοχία του επιχώματος της οδού. Σημειώνεται ότι τις προηγούμενες ημέρες είχαν προηγηθεί έντονα καιρικά φαινόμενα τα

οποία και ουσιαστικά συνέβαλαν στην εκδήλωση του φαινομένου. Αποτέλεσμα αυτής της αστοχίας ήταν να υποχωρήσει το ένα ρεύμα κυκλοφορίας προς τα κατάντη. Παρόλο που η κυκλοφορία πλέον γίνεται από το ένα ρεύμα κυκλοφορίας, υπάρχει η επικινδυνότητα να καταρρεύσει ολοσχερώς η οδός και να διακοπεί τελείως η οδική κυκλοφορία στο εν λόγω σημείο. Η αστοχία εκδηλώθηκε επί του απότομου πρανούς και είχε ως αποτέλεσμα:

- την ανεξέλεγκτη πτώση υλικών επί του πρανούς που κάλυψαν μία έκταση στα κατάντη της τάξης των 250 m² περίπου,
- την υποσκαφή του οδοστρώματος της οδού και την καταστροφή μέρους αυτού εύρους έως 2 μέτρα (φώτο 1).

Η Π.Ε. Κεφαλληνίας, τοποθέτησε άμεσα σήμανση εκατέρωθεν της αστοχίας για την προστασία των διερχόμενων οχημάτων, ενώ επιπλέον, για λόγους προσωρινής προστασίας αλλά και αποτροπής περαιτέρω υποσκαφών επί του οδοστρώματος, προχώρησε στην κάλυψη της κατολισθαίνουσας έκτασης με αδρόκοκκα υλικά (φώτο 2). Σημειώνεται ότι δεν παρατηρήθηκαν αστοχίες στο τοιχείο προστασίας της οδού, ύψους ενός περίπου μέτρου στη βάση του ανάντη πρανούς. Να αναφερθεί τέλος, ότι στη θέση εκδήλωσης της αστοχίας, υπάρχει υπόγειο τεχνικό μικρού βάθους, το οποίο παροχετεύει (υπόγεια της οδού) τα ύδατα της αποστραγγιστικής τάφρου της οδού, του ανάντη πρανούς.

Φώτο 1. Άποψη της κατολίσθησης επί του κατάντη πρανούς της οδού. Παρατηρείται το τμήμα του οδοστρώματος που έχει καταστραφεί, ενώ είναι εμφανής η επικινδυνότητα για επέκταση των υποσκαφών προς το εσωτερικό της οδού. Διακρίνεται επίσης, το τοιχείο του ανάντη πρανούς το οποίο έχει παραμείνει ανέπαφο.

Φώτο 2. Κάλυψη της διαταραγμένης ζώνης με αδρόκοκκα υλικά, ως προσωρινό μέτρο αποφυγής περαιτέρω επέκτασης του φαινομένου.

Σημειώνεται ότι στα πλαίσια των ενεργειών για την αντιμετώπιση του φαινομένου, η Διεύθυνση Τεχνικών Έργων της Π.Ε. Κεφαλληνίας, κάλεσε άμεσα το ΙΓΜΕ, το οποίο με ειδικό κλιμάκιο προχώρησε σε αυτοψία και εν συνεχεία σε σύνταξη κατάλληλης τεχνικογεωλογικής έκθεσης. Στην έκθεση, περιγράφονται οι τεχνικογεωλογικές συνθήκες της περιοχής, ο μηχανισμός εκδήλωσης του φαινομένου και υποβάλλονται ενδεικτικά προτάσεις αναφορικά με την αντιμετώπιση του.

Η θέση της κατολίσθησης έχει τις ακόλουθες συντεταγμένες (σύστημα ΕΓΣΑ 87): X= 214962 Y= 4221754.

3. ΓΕΩΜΟΡΦΟΛΟΓΙΚΕΣ-ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ

3.1. Γεωμορφολογικές – Γεωλογικές συνθήκες ευρύτερης περιοχής

Η προς μελέτη περιοχή εντάσσεται στο νοτιοανατολικό άκρο της Κεφαλονιάς στη Δ.Ε. Ελειού-Πρόννων του Δήμου Κεφαλληνίας. Εντοπίζεται στις νοτιοδυτικές πλαγιές των εξάρσεων Καμπούλια (606 μ.) και Κοκοροβιθιές, με το ανάγλυφο να είναι πολύ έντονο και απότομο ως αποτέλεσμα των έντονων νεοτεκτονικών κινήσεων που χαρακτηρίζουν την περιοχή (σχήμα 2). Το υψόμετρο ανέρχεται σε 282 μέτρα περίπου. Οι κλίσεις της πλαγιάς είναι αρκετά μεγάλη (20-40%) ενώ στα κατάντη κατά θέσεις γίνεται σχεδόν κατακόρυφη. Αραιά θαμνώδης βλάστηση αναπτύσσεται στον χώρο μεταξύ του δρόμου έως την κορυφογραμμή. Πυκνή βλάστηση από σκίνα και πουρνάρια καλύπτει τα απότομα πρανή κατάντη του δρόμου έως την κοίτη του χειμάρρου. Η περιοχή αποστραγγίζεται μέσω μικρών χειμάρρων τόσο βόρεια προς τον χείμαρρο Αγ. Ειρήνης όσο και νότια απευθείας στην θάλασσα στον όρμο Κατελειού.

Σχήμα 1. Κάλυψη της διαταραγμένης ζώνης με αδρόκοκκα υλικά, ως προσωρινό μέτρο αποφυγής περαιτέρω επέκτασης του φαινομένου.

Η Κεφαλονιά γεωτεκτονικά εντάσσεται στην Ζώνη Παξών με εξαίρεση το ΝΑ τμήμα της που ανήκει στην Ιόνιο Ζώνη.

Στην ευρύτερη περιοχή εντοπίζονται οι ακόλουθοι σχηματισμοί. Ζώνη Παξών (σχήμα 2):

- Δευτερογενείς δολομίτες του Κατώτερου Κρητιδικού(ki-d), γκρι έως πρασινωπού χρώματος οι οποίοι εμφανίζονται στο βόρειο τμήμα του νησιού (Καλόν Όρος) και στην νοτιοδυτική πλευρά του Αίνου.
- Ασβεστόλιθους του Ανωτέρου κρητιδικού(ks-k), λευκοί κλαστικοί ασβεστόλιθοι με πλήθος απολιθωμάτων (γαστερόποδα, ρουδίστες, εχινόδερμα, σπόγγοι κ.α). Είναι λεπτοστρωματώδεις παχυστρωματώδεις η και άστρωτοι και αποτελούν τον κυρίαρχο σχηματισμό στον Αίνο αλλά και σε ολόκληρη την Κεφαλονιά. Στην περιοχή ενδιαφέροντος εμφανίζονται ΒΔ της Πάστρας στα υψώματα Κακορεβυθιές.
- Ασβεστόλιθοι Παλαιοκαίνου (Pc-k), λεπτοστρωματώδεις η άστρωτοι εμφανίζονται σε περιορισμένες εκτάσεις κυρίως στην ανατολική πλευρά του Αίνου.
- Ασβεστόλιθοι Ηωκαίνου (eO-k), άστρωτοι έως παχυστρωματωδεις κλαστικοί ασβεστόλιθοι με Νουμουλίτες και Αλβεολίνες. Εμφανίζονται κυρίως στην περιοχή Παλικής.
- Σειρά του Ανώτερου Ολιγοκαίνου-Ανωτέρου Μειοκαίνου (Mi-c, Mi-k), στην λιθοστρωματογραφική στήλη της σειράς συμμετέχουν κροκαλοπαγή, μάργες, μαργαϊκοί ασβεστόλιθοι, αμμούχες μάργες και αργιλικές μάργες. Είναι οι σχηματισμοί στους οποίους εδράζεται ο δρόμος στην ευρύτερη περιοχή της αστοχίας.

- Πλειόκαινο(Pl-s), κροκαλοπαγές, ψαμμίτης και ασβεστόλιθος στα κατώτερα στρωματά που μεταπίπτουν σε ψαμμιτικούς ασβεστόλιθους και αμμούχες μάργες στα ανώτερα στρώματα. Εμφανίζονται δυτικά της Πάστρας και ανάντη του δρόμου Αγ. Γεώργιος -Καπανδρίτι.
- Πλειστόκαινο (Qdl), κροκαλοπαγή και ασβεστιτικός ψαμμίτης με σημαντική εξάπλωση ανατολικά της Πάστρας.
- Αλλουβιακές προσχώσεις και κορήματα (Q-al), καλύπτουν μικρές εκτάσεις στην περιοχή Αγ. Ειρήνης και Σκάλας.

Η Ιόνιος ζώνη όπως αναφέραμε αναπτύσσεται τις νοτιοανατολικές περιοχές της Κεφαλονιάς Λιμένια – Πόρος - Σάμη. Οι σχηματισμοί της δεν εμφανίζονται στην περιοχή ενδιαφέροντος με εξαίρεση ένα μικρό τεκτονικό κάλυμμα από ασβεστόλιθους Βίγλας (ch) δυτικά της περιοχής ενδιαφέροντος. Το γεωλογικό υπόβαθρο αποτελούν οι γύψοι και τα Τριαδικά λατυποπαγή και στη συνεχεία ακολουθεί η ανθρακική σειρά της Ιόνιου με ένα ευρύ φάσμα ιζηματογένεσης που περιλαμβάνει: ασβεστόλιθους Παντοκράτορα ,ασβεστόλιθους Ammonitico rosso, σχιστόλιθους με Ποσειδώνιες, ασβεστόλιθους Βίγλας, ασβεστόλιθους Σενωνίου, ασβεστόλιθους Παλαιοκαίνου-Ηωκαίνου.

Οι έντονες γεωδυναμικές διεργασίες και η σεισμική δραστηριότητα στο νησί έχουν επιφέρει καταπόνηση των γεωλογικών σχηματισμών. Όπως φαίνεται και στον γεωλογικό χάρτη κλ. 1:50.000) ένα πλήθος ρηγμάτων διασχίζει τις γεωλογικές ενότητες και σε πολλές περιπτώσεις, κυρίως στις ασβεστολιθικές μάζες, έχει επέλθει κατακερματισμός και κονιορτοποιήση. Η πυκνή και ισχυρή τεκτονική δραστηριότητα που λαμβάνει χώρα στην Κεφαλονιά σε συνδυασμό με την μορφολογία και τις τοπικές υδρογεωλογικές συνθήκες δημιουργεί σε πολλές περιπτώσεις συνθήκες αστάθειας και ευνοεί την εκδήλωση κατολισθητικών φαινομένων. Στην ευρύτερη περιοχή μελέτης, αναπτύσσονται ρηξιγενείς ζώνες με δύο κύριες διευθύνσεις ΒΔ-ΝΑ και ΒΑ – ΝΔ.

ΥΠΟΜΝΗΜΑ ΓΕΩΛΟΓΙΚΟΥ ΧΑΡΤΗ

ΟΛΟΚΑΙΝΟ-ΝΕΟΓΕΝΕΣ

Αλλουβιακές προσχώσεις

Κροκαλοπαγή Πλειστοκαίνου

Κροκαλοπαγή, ψαμμίτες και μάργες του Πλειόκαινου

ΖΩΝΗ ΠΑΞΩΝ

Ανώτερο Ολιγόκαινο - Ανώτερο Μειόκαινο: Κροκαλοπαγή, ψαμμίτες, μάργες και ασβεστόλιθος

Ασβεστόλιθοι Ανώτερου Κρητιδικού

Δολομίτες και ασβεστόλιθοι Κατώτερου Κρητιδικού

Ασβεστόλιθοι Ανώτερου Κρητιδικού

Ασβεστόλιθοι Βίγλας Σχήμα 2. Γεωλογικός χάρτης ΙΓΜΕ ευρύτερης περιοχής μελέτης.

3.2. Τεχνικογεωλογικές συνθήκες στενής περιοχής μελέτης

Με βάση τα επιτόπου στοιχεία που συλλέχτηκαν από μέλη της ομάδας εκπόνησης της μελέτης στην περιοχή ενδιαφέροντος, τις πληροφορίες που αντλήθηκαν από την τεχνικογεωλογική έκθεση του ΙΓΜΕ αλλά και από τα στελέχη της Διεύθυνσης Τεχνικών Έργων Π.Ε. Κεφαλληνίας και σε συνδυασμό με τα επιτόπου στοιχεία που προέκυψαν από την γεωτεχνική έρευνα, διαχωρίστηκαν για την περιοχή του έργου οι κάτωθι τεχνικογεωλογικές ενότητες (όπως αποτυπώνονται στο τεχνικογεωλογικό χάρτη κλίμακας 1:500 – Σχήμα 3):

<u>Πρόσφατα υλικά κατολισθήσεων</u>. Προήλθαν από την εκδήλωση της κατολίσθησης και χαρακτηρίζονται από ανάμεικτη σύσταση και μηδενική συνοχή. Η σύσταση τους καθορίζεται από τα υλικά των σχηματισμών που παρασύρθηκαν και μετακινήθηκαν προς τα κατάντη κατά την εκδήλωση του φαινομένου. Έχουν μικρό πάχος (έως 2 μέτρα στα κατάντη του πρανούς όπου έχουν συσσωρευτεί από την μετακίνηση τους) και καλύπτουν την περιοχή που έχει επηρεαστεί από την κατολίσθησης.

<u>Αμμοχάλικα και υλικά οδοστρωσίας.</u> Καστανά-ανοιχτοκάστανα χαλίκια ασβεστολιθικής κυρίως σύστασης με άμμο και μικρότερο ποσοστό αργίλου και ιλύος. Περιλαμβάνουν και τα υλικά οδοστρωσίας τα οποία παρουσιάζουν μία σχετική διαβάθμιση. Καλύπτουν την οδό κυρίως προς το κατάντη πρανές καθώς και τη στέψη του εν λόγω πρανούς με το πάχος τους να είναι μικρό και να μην ξεπερνά τα 3,5 μέτρα. Στην άκρη της οδού στη βάση του ανάντη πρανούς, ουσιαστικά εκμηδενίζονται. Υλικά μέτριας έως χαμηλής συνοχής, που αποτέλεσαν την κύρια πηγή τροφοδοσίας των κατολισθαίνοντων υλικών. Διαπερατά υλικά λόγω της χαλαρής δομής τους αλλά και της αδρομερούς σύστασης τους.

<u>Κροκαλοπαγή</u>. Ασβεστολιθικά – ψαμμιτικά κροκαλοπαγή κατά θέσεις ψηφιδοπαγή ή ακόμα και ψαμμίτες, μέτρια έως καλά συγκολλημένα, με ψηφίδες και κροκάλες ποικίλης κοκκομετρικής σύστασης και μία συγκολλητική μάζα από ασβεστοψαμμιτικό υλικό. Παρουσιάζονται έντονα τεκτονισμένα με αποτέλεσμα να δημιουργούν αυξημένο δευτερογενές πορώδες που επιτρέπει την διέλευση των υπόγειων υδάτων. Εντοπίζονται στο ανάντη πρανές της οδού σε ύψος πάνω από 6 μέτρα και το πάχος τους είναι σχετικά μικρό. Επικάθονται ασύμφωνα των υποκείμενων καστανών αμμωδών αργίλων.

<u>Καστανοί αμμώδεις άργιλοι.</u> Πρόκειται για σχηματισμό από αργίλους με κυμαινόμενο ποσοστό άμμου και ιλύος, ο οποίος εντοπίζεται επί της οδού κάτω από τα αμμοχάλικα ενώ στο ανάντη πρανές υπόκειται των κροκαλοπαγών. Αποτελεί ουσιαστικά τη ζώνη μετάβασης από τα κροκαλοπαγή στις υποκείμενες τεφρές άμμους και αργίλους. Μέτριας έως καλής συνοχής σχηματισμός, μικρού πάχους που στην θέση εκδήλωσης της κατολίσθησης δεν ξεπερνά τα δύο περίπου μέτρα, ενώ στο ανάντη πρανές φτάνει έως και τα πέντε μέτρα. Σχηματισμός που ευνοεί την μερική διέλευση των υπόγειων υδάτων λόγω του σημαντικού ποσοστού άμμου αλλά και της σχετικά μέτριας συνοχής του. Τα αργιλικά κλάσματα όπως παρατηρήθηκε επιτόπου (κατά την γεωτεχνική έρευνα, αλλά και από τα αποτελέσματα των εργαστηριακών δοκιμών) παρουσιάζουν υψηλή πλαστικότητα. Μέρος των καστανών αργίλων, συμπαρασύρθηκε κατά την εκδήλωση της αστοχίας και αναμείχθηκε με τα υπόλοιπα υλικά που ολισθήσανε. Επί του πρανούς στην επαφή με τα κροκαλοπαγή εκδηλώνεται ασθενούς μορφής πηγαία εκφόρτιση.

<u>Τεφροί έως σκουρόχρωμοι άργιλοι και άμμοι.</u> Τεφροί με το βάθος σκουρόχρωμοι άργιλοι με κυμαινόμενο ποσοστό άμμου και ιλύος με παρεμβολές σημαντικού πάχους από τεφρές άμμους και αμμοϊλύες με ποικίλο ποσοστό αργίλου. Υπόκεινται των καστανών αργίλων και αποτελούν το γεωλογικό υπόβαθρο της στενής περιοχής ενδιαφέροντος. Υγιής σχηματισμός καλής έως πολύ καλής γεωμηχανικής συμπεριφοράς, το πάχος του οποίου είναι αρκετά μεγάλο και καθορίζεται σε σημαντικό βαθμό από την νεοτεκτονική αλλά και το παλαιοανάγλυφο των υποκείμενων αλπικών σχηματισμών. Κατά θέσεις αποκτά ημιβραχώδη δομή, ενώ θεωρείται πρακτικά αδιαπέρατος σχηματισμός. Στη στενή περιοχή μελέτης δεν εντοπίζονται επιφανειακά.

Φώτο 3. Άποψη του ανάντη πρανούς, όπου διακρίνονται στη στέψη του τα κροκαλοπαγή. Επίσης σημειώνεται η θέση της ασθενούς πηγαίας εκφόρτισης.

3.3. Συνθήκες εκδήλωσης αστοχίας

Το φαινόμενο εκδήλωσης της αστοχίας επί της Επαρχιακής Οδού, οφείλεται σε ένα συνδυασμό παραγόντων που αναλύονται ως εξής:

- τα έντονα καιρικά φαινόμενα (υψηλές βροχοπτώσεις) που προηγηθήκανε της 19-1-2017 που εκδηλώθηκε το φαινόμενο,
- η απότομη κλίση του κατάντη της οδού πρανούς, το οποίο και καλύπτεται από χαλαρές αποθέσεις (αμμοχάλικα),
- η έλλειψη ισχυρού αποστραγγιστικού δικτύου της οδού (επενδεδυμένη τάφρος στα ανάντη) με αποτέλεσμα τα όμβρια ύδατα να κινούνται ανεξέλεγκτα και να εμποτίζουν το κατάντη πρανές της οδού,
- το μικρό βάθος του υφιστάμενου τεχνικού (όπως φαίνεται στη φώτο 1, στο πρανές φτάνει σε βάθος μόλις 1,5 μέτρα). Αυτό είχε ως αποτέλεσμα, αντί να παροχετεύονται με ασφάλεια τα όμβρια προς τα κατάντη, αντιθέτως εμπότιζαν περαιτέρω το κατάντη πρανές,
- των χαλαρών επιφανειακών υλικών που δομούν επιφανειακά το μεγαλύτερο τμήμα της οδού (αμμοχάλικα),
- της μέτριας συνοχής των υποκείμενων καστανών αργίλων με άμμο σε συνδυασμό με την υψηλή πλαστικότητα των αργιλικών συστατικών, αλλά και της σχετικά υψηλής υδροπερατότητας που παρουσιάζουν που επιτρέπει την διέλευση υπόγειων υδάτων από τη μάζα τους,
- των υψηλών σχετικά υπόγειων μεταγγίσεων υδάτων από τα ανάντη, λόγω της ύπαρζης των κροκαλοπαγών που εμποτίζουν τις καστανές αργίλους με άμμο και εν συνεχεία των αμμοχάλικων.

4. ΕΚΤΕΛΕΣΘΕΙΣΑ ΕΡΕΥΝΑ

4.1 Έρευνα υπαίθρου

Οι γεωτεχνικές συνθήκες στη θέση της κατολίσθησης διερευνήθηκαν με την εκτέλεση δύο (-2-) περιστροφικών, δειγματοληπτικών γεωτρήσεων, με σήμανση Γ1 και Γ2 βάθους 17.00m και 23.00m αντίστοιχα.

Οι εργασίες υπαίθρου εκτελέστηκαν στις 11-13 Ιουλίου 2017. Η εκτέλεση των γεωτρήσεων έγινε με περιστροφικό γεωτρύπανο τύπου BOYLES BBS-37, φερόμενο επί φορτηγού και εφαρμόστηκαν οι παρακάτω προδιαγραφές:

- "Τεχνικές Προδιαγραφές Δειγματοληπτικών Γεωτρήσεων Ξηράς για Γεωτεχνικές Έρευνες" (Ε 101-83), Υ.ΠΕ.ΧΩ.ΔΕ / Γ.Γ.Δ.Ε. / Διεύθυνση Ερευνών Εδαφών (ΕΚ1), Φ.Ε.Κ. 363/24.06.83, Τεύχος Β.
- "Τεχνικές Προδιαγραφές Επιτόπου Δοκιμών Εδαφομηχανικής" (Ε 106-86)), Υ.ΠΕ.ΧΩ.ΔΕ / Γ.Γ.Δ.Ε. / Διεύθυνση Ερευνών Εδαφών (ΕΚ1), Φ.Ε.Κ. 995/31.12.86, Τεύχος Β.

Για τη διάτρηση των γεωτρήσεων ανάλογα με τον εδαφικό σχηματισμό χρησιμοποιήθηκε η κατάλληλη τεχνική διάτρησης ώστε να αυξηθεί στο μέγιστο η δειγματοληψία και να ελαχιστοποιηθεί η διαταραχή του δείγματος. Για την αποφυγή κατάπτωσης των τοιχωμάτων της γεώτρησης χρησιμοποιήθηκε σωλήνωση κατάλληλης διαμέτρου.

Η διάτρηση των εδαφικών σχηματισμών έγινε με χρήση μονής καροταρίας με κοπτικό άκρο από βίδια. Κατά τη διάρκεια της διάτρησης των εδαφικών στρώσεων, η δειγματοληψία ήταν συνεχής και ελήφθησαν ημιδιαταραγμένα δείγματα "φραγμού" με διακοπή του νερού διάτρησης.

Κατά τη διάτρηση της γεώτρησης σε εδαφικό σχηματισμό εκτελέστηκαν δοκιμές τυποποιημένης διείσδυσης SPT (Standard Penetration Test) κατά Terzaghi σύμφωνα με το πρότυπο ASTM D 1586–08a, κατά τις οποίες ελήφθησαν αντιπροσωπευτικά δείγματα με τον διαιρετό δειγματολήπτη SS-2 (split spoon).

Κατά την καταγραφή των γεωτρήσεων, πέραν των τεχνικών χαρακτηριστικών της διάτρησης, έγινε πλήρης γεωλογική καταγραφή των πυρήνων των γεωτρήσεων.

Όλα τα δείγματα μετά την επί τόπου μακροσκοπική εξέτασή τους και καταγραφή, τοποθετήθηκαν σε ειδικά ξυλοκιβώτια και φωτογραφήθηκαν. Από τα παραπάνω δείγματα επελέγησαν όσα προορίζονταν για εργαστηριακές δοκιμές και μεταφέρθηκαν για ανάλυση στο εργαστήριο γεωτεχνικής μηχανικής και ποιοτικού ελέγχου «ΓΕΩΔΟΜΗ» (www.e-geodomi.gr).

Η θέση των γεωτρήσεων δίνεται σε απόσπασμα τοπογραφικού διαγράμματος, Παράρτημα Α. Οι τομές υπεδάφους των γεωτρήσεων δίνονται στο Παράρτημα Β και η φωτογραφική αποτύπωση των δειγμάτων των γεωτρήσεων δίνεται στο Παράρτημα Γ.

Τα βάθη των γεωτρήσεων δίνονται στον Πίνακα.

ΓΕΩΤΡΗΣΗ	ΒΑΘΟΣ
	(m)
Г1	17.00
Г2	23.00

4.2. Εργαστηριακές δοκιμές

Σε αντιπροσωπευτικά εδαφικά δείγματα των γεωτρήσεων εκτελέσθηκαν εργαστηριακές δοκιμές κατάταξης, προκειμένου να διερευνηθούν οι ιδιότητες των γεωτεχνικών σχηματισμών που συναντώνται στο υπέδαφος. Στα διαταραγμένα εδαφικά δείγματα εκτελέσθηκαν δοκιμές κατάταξης, ήτοι: προσδιορισμός φυσικής υγρασίας, κοκκομετρική ανάλυση με κόσκινα, προσδιορισμός ορίων Atterberg και ειδικού βάρους.

Σε αντιπροσωπευτικά δείγματα φραγμού εκτελέστηκαν, επιπλέον των δοκιμών κατάταξης, δοκιμές ανεμπόδιστης θλίψης, δοκιμές άμεσης διάτμησης, και δοκιμές στερεοποίησης.

Εκτελέσθηκαν επίσης σε βραχώδεις πυρήνες των γεωτρήσεων δοκιμές σημειακής φόρτισης.

Οι εργαστηριακές δοκιμές εκτελέσθηκαν σύμφωνα με τις προδιαγραφές "Τεχνικές Προδιαγραφές Εργαστηριακών Δοκιμών Εδαφομηχανικής (Ε105-86)", Υ.ΠΕ.ΧΩ.ΔΕ / Γ.Γ.Δ.Ε. / Διεύθυνση Ερευνών Εδαφών (ΕΚ1), Φ.Ε.Κ. 955/31.12.86, Τεύχος Β.

Τα αποτελέσματα των εργαστηριακών δοκιμών παρουσιάζονται συγκεντρωτικά σε πίνακες. Επίσης δίνονται στην τομή υπεδάφους των γεωτρήσεων και σε διαγράμματα στο Παράρτημα Β.

5. ΓΕΩΤΕΧΝΙΚΕΣ ΣΥΝΘΗΚΕΣ

5.1. ΤΟΜΗ ΥΠΕΔΑΦΟΥΣ

Οι τομές υπεδάφους των γεωτρήσεων παρουσιάζοναι στο Παράρτημα Β και έχουν ως ακολούθως: Γεώτρηση Γ1

- 0.00 0.40m Πρόσφατες επιχώσεις.
- 0.40 3.00m Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο.

Το ποσοστό των χαλικιών είναι 38% της άμμου είναι 32% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, 30%. Το όριο υδαρότητας LL είναι 29%, ο δείκτης πλαστικότητας PI 15% και η φυσική υγρασία w είναι 11%.

Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N = 30, ανά 30cm διείσδυση σε βάθος 2.00m.

3.00 - 5.00m Καστανή, στιφρή ΑΡΓΙΛΟΣ με άμμο, εξαιρετικά υψηλής πλαστικότητας.

Το ποσοστό της άμμου είναι 27% και των λεπτοκόκκων, διερχόμενο από το κόσκινο No. 200, 73%. Το όριο υδαρότητας LL είναι 53%, ο δείκτης πλαστικότητας PI 35% και η φυσική υγρασία w είναι 17.8%.

Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N = 24, ανά 30cm διείσδυση σε βάθος 4.00m.

- 5.00 8.50m Τεφρή, μέτρια πυκνή έως πυκνή ιλυώδης ΑΜΜΟΣ. Το ποσοστό της άμμου κυμαίνεται από 51% έως 52% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, από 48% έως 49%. Το όριο υδαρότητας LL είναι 23%, ο δείκτης πλαστικότητας PI 6% ή παρουσιάζει αμελητέα πλαστικότητα και η φυσική υγρασία w είναι 13.4%. Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N = 27 και N = 51, ανά 30cm διείσδυση σε βάθη 6.00m, και 7.90m αντίστοιχα.
- 8.50 10.00m Τεφρή, σκληρή ΑΡΓΙΛΟΣ υψηλής πλαστικότητας. Το ποσοστό της άμμου είναι 2% και των λεπτοκόκκων, διερχόμενο από το κόσκινο No. 200, 98%. Το όριο υδαρότητας LL είναι 51%, ο δείκτης πλαστικότητας PI 34% και η φυσική υγρασία w είναι 15.3%.
- 10.00 17.00m Τεφρή, σκληρή ΑΡΓΙΛΟΣ με άμμο, μέσης πλαστικότητας. Περιέχει ορίζοντες σκληρής μάργας σε βάθη 10.12m 11.30m και 11.50m 12.40m. Επίσης στα 14.50m 15.00m συναντάται ψαμμιτικός ορίζοντας.
 Το ποσοστό της άμμου είναι 18% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, 82%. Το όριο υδαρότητας LL κυμαίνεται από 32% έως 33%, ο δρίκτης πλαστικότητας PL από 14% έως 16% και των αυστά υναρτία μετροφίωσται

δείκτης πλαστικότητας PI από 14% έως 16% και η φυσική υγρασία w κυμαίνεται από 14.8% έως 15.5%. Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε ΑΡΝΗΣΗ διείσδυσης σε βάθη

10.00m, 13.60m каі 16.00m.

Γεώτρηση Γ2

- 0.00 0.40m Πρόσφατες επιχώσεις.
- 0.40 3.45m Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο.
 - Το ποσοστό των χαλικιών είναι 68% της άμμου είναι 15% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, 17%. Το όριο υδαρότητας LL είναι 23%, ο δείκτης πλαστικότητας PI 10% και η φυσική υγρασία w είναι 5%.

Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N = 23, ανά 30cm διείσδυση σε βάθος 3.00m

3.45 – 4.50m Καστανή, στιφρή αμμώδης ΑΡΓΙΛΟΣ υψηλής πλαστικότητας.

Το ποσοστό της άμμου είναι 33% και των λεπτοκόκκων, διερχόμενο από το κόσκινο No. 200, 67%. Το όριο υδαρότητας LL είναι 35%, ο δείκτης πλαστικότητας PI 24% και η φυσική υγρασία w είναι 12.4%.

- 4.50 6.00m Τεφρή, σκληρή αμμώδης ΑΡΓΙΛΟΣ μέσης πλαστικότητας. Το ποσοστό της άμμου είναι 45% και των λεπτοκόκκων, διερχόμενο από το κόσκινο No. 200, 55%. Το όριο υδαρότητας LL είναι 29%, ο δείκτης πλαστικότητας PI 13% και η φυσική υγρασία w είναι 11.1%. Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N = 87, ανά 30cm διείσδυση σε βάθος 5.00m.
- 6.00 14.00m Τεφρή, πολύ πυκνή ιλυώδης ΑΜΜΟΣ. Περιέχει ορίζοντες αμμώδους ιλύος σε βάθη 9.15m 10.00m και 13.10m 13.50m. Το ποσοστό της άμμου κυμαίνεται από 41% έως 65% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, από 35% έως 59%. Ο σχηματισμός παρουσιάζει αμελητέα πλαστικότητα και η φυσική υγρασία w κυμαίνεται από 12.1% έως 17.9%.

Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N > 50, ανά 30cm διείσδυση σε βάθος 7.00m, στη συνέχεια έδωσε ΑΡΝΗΣΗ διείσδυσης σε βάθος 9.00m, ενώ έδωσε κρούσεις N > 50, ανά 30cm διείσδυση, σε βάθη 11.50m, και 13.73m.

14.00 – 23.00m Τεφρή, σκληρή **ΑΡΓΙΛΟΣ** υψηλής πλαστικότητας. Περιέχει ορίζοντες σκληρής μάργας σε βάθη 14.00m - 15.30m και 16.80m - 17.70m.

Το ποσοστό της άμμου κυμαίνεται από 2% έως 5% και των λεπτοκόκκων, διερχόμενο από το κόσκινο Νο. 200, από 95% έως 98%. Το όριο υδαρότητας LL κυμαίνεται από 39% έως 48%, ο δείκτης πλαστικότητας PI από 23% έως 31% και η φυσική υγρασία w κυμαίνεται από 11.3% έως 12.9%.

Η δοκιμή τυποποιημένης διείσδυσης (SPT) έδωσε κρούσεις N > 50, ανά 30cm διείσδυση σε βάθος 16.00m.

5.2 Στάθμη υπόγειων υδάτων

Κατά τη διάρκεια εκτέλεσης των γεωτρήσεων, τον Ιούλιο του 2017, διαπιστώθηκε στάθμη υπόγειων υδάτων, όπως φαίνεται στον παρακάτω Πίνακα 5.1.

ΓΕΩΤΡΗΣΗ	ΣΤΑΘΜΗ	HMEPOMHNIA										
	(m)	(dd/mm/yyyy)										
Γ1	-	11/7/2017										
Г2	-	13/7/2017										

ΠΙΝΑΚΑΣ 5.1: ΣΤΑΘΜΗ ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ

5.3. Αποτελέσματα εργαστηριακών δοκιμών

Τα αποτελέσματα των εργαστηριακών και επιτόπου δοκιμών για τον προσδιορισμό των φυσικών και μηχανικών ιδιοτήτων του εδάφους παρουσιάζονται στην τομή υπεδάφους και σε διαγράμματα στο Παράρτημα Β. Τα συγκεντρωτικά αποτελέσματα των δοκιμών κατάταξης δίνονται στον Πίνακα 5.2. Τα αποτελέσματα των δοκιμών ανεμπόδιστης θλίψης στον Πίνακα 5.3, τα αποτελέσματα άμεσης διάτμησης στον Πίνακα 5.4, τα αποτελέσματα των δοκιμών στερεοποίησης στον Πίνακα 5.5 και τα αποτελέσματα του προσδιορισμού του μέτρου συμπιεστότητας κατά τη δοκιμή στερεοποίησης στον Πίνακα 5.6.

Επίσης τα αποτελέσματα των δοκιμών σημειακής φόρτισης (Point Load) δίνονται στον Πίνακα 5.7.

ΠΙΝΑΚΑΣ 5.2: ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΚΑΤΑΤΑΞΗΣ ΔΕΙΓΜΑΤΩΝ

ГРНΣН	ITMA	ΑΘΟΣ	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}\\ \end{array}{}$							N	ΧΑΛΙΚΕΣ	ΑΜΜΟΣ	ΛΕΠΤΟΚΟΚΚ Α ΙΛΥΣ / ΑΡΓΙΛΟΣ	ΕΙΔΙΚΟ ΒΑΡΟΣ	ATAEH ATA JSCS						
ΓΕΩ	ΔE	Щ	W	LL	PL	PI	1"	3/4"	1/2"	3/8''	No4	No10	No40	No100	No200	< 0.005mm	> No4	No4 - No200	< No200	Gs	KAT/ K
		(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		Ξ.
Г1	Δ1	1.60 - 2.00	11	29	14	15	93	87	77	72	62	53	39		30		38	32	30		GC
	Δ2	3.00 - 3.40	17.8	53	18	35				100	100	94	89		73	50	0	27	73	2.70	СН
	Δ3	5.10 - 5.50	13.4	23	17	6					100	100	99		48		0	52	48	2.65	SC-SM
	$\Delta 4$	7.00 - 7.30	13.4	NP	NP	NP					100	100	100		49		0	51	49	2.66	SM
	$\Delta 5$	9.00 - 9.30	15.3	51	17	34						100	100		98	51	0	2	98	2.70	СН
	$\Delta 6$	15.50 -	15.5	32	18	14					100	100	99		82		0	18	82		CL
	$\Delta 7$	16.70 -	14.8	33	17	16					100	100	99		82		0	18	82		CL
Г2	Δ1	2.60 - 3.00	5	23	13	10	45	42	36	35	32	29	24		17		68	15	17		GC
	Δ2	3.45 - 3.70	12.4	35	11	24					100	100	99		67	34	0	33	67	2.69	CL
	Δ3	4.50 - 5.00	11.1	29	16	13					100	100	100		55		0	45	55		CL
	$\Delta 4$	6.80 - 7.00	17.9	NP	NP	NP					100	99	96		35		0	65	35		SM
	$\Delta 5$	8.30 - 8.60	16.9	NP	NP	NP					100	100	100		45		0	55	45	2.69	SM
	$\Delta 6$	9.15 - 9.50	16.0	NP	NP	NP					100	100	99		54		0	46	54	2.68	ML
	$\Delta 7$	10.30 -	13.5	NP	NP	NP				100	100	99	97		46		0	54	46		SM
	$\Delta 8$	13.10 -	12.1	NP	NP	NP				100	100	99	96		59		0	41	59		ML
	Δ9	15.40 -	12.9	39	16	23					100	100	100		95		0	5	95		CL
	Δ10	19.50 -	11.3	48	17	31				100	100	100	99		97	37	0	3	97	2.69	CL
	Δ11	22.30 -	12.0	46	17	29					100	100	99		98		0	2	98		CL

ГЕΩТРНΣН - ΔЕПТМА	ΒΑΘΟΣ	ΦΥΣΙΚΗ ΥΓΡΑΣΙΑ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΔΕΙΚΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	AIEPXOMENO No.4	AIEPXOMENO No.200	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΒΑΘΜΟΣ ΚΟΡΕΣΜΟΥ	ΤΕΛΙΚΗ ΠΑΡΑΜΟΡΦΩΣΗ	ANTOXH ANEMIIOAIΣTHΣ ΘΛΙΨΗΣ	ПЕРІГРАФН
Í		W	LL	PI			γ_d	S	ϵ_{fn}	q_{u}	
	(m)	(%)	(%)	(%)	(%)	(%)	(kN/m ³)	(%)	(%)	(kPa)	
$\Gamma 1 - \Delta 2$	3.00 - 3.40	16.8	53	35	100	73	17.73	92.4	15.0	274	СН
$\Gamma 1 - \Delta 5$	9.00 - 9.30	15.2	51	34	100	98	18.75	99.3	8.1	726	СН
$\Gamma 1 - \Delta 6$	15.50 - 16.00	15.5	32	14	100	82	18.20		6.5	435	CL
$\Gamma 1 - \Delta 7$	16.70 - 17.00	14.8	33	16	100	82	18.33		7.0	489	CL
$\Gamma 2 - \Delta 2$	3.45 - 3.70	12.5	35	24	100	67	19.38	93.9	15.0	803	CL
$\Gamma 2 - \Delta 3$	4.50 - 5.00	11.1	29	13	100	55	18.59		3.4	354	CL
$\Gamma 2 - \Delta 9$	15.40 - 16.00	12.9	39	23	100	95	19.11		5.0	788	CL
$\Gamma 2 - \Delta 10$	19.50 - 20.00	11.3	48	31	100	97	19.95	95.3	3.2	2718	CL
$\Gamma 2 - \Delta 11$	22.30 - 22.60	12.0	46	29	100	98	19.82		3.5	3135	CL

ΠΙΝΑΚΑΣ 5.3: ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ

ΠΙΝΑΚΑΣ 5.4: ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΤΑΧΕΙΑΣ ΔΙΑΤΜΗΣΗΣ ΧΩΡΙΣ ΣΤΕΡΕΟΠΟΙΗΣΗ

ΗΣΗ - ΔΕΙΓΜΑ	ΒΑΘΟΣ	ΦΥΣΙΚΗ ΥΓΡΑΣΙΑ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΔΕΙΚΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	AIEPXOMENO No.200	ΕΙΔΙΚΟ ΒΑΡΟΣ ΚΟΚΚΩΝ	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΚΑΤΑΚΟΡΥΦΗ ΤΑΣΗ	METIZTH Alatmhtikh Tazh	ΓΩNIA EΣΩTEPIKHΣ TPIBHΣ	ΣΥΝΟΧΗ
2TPI		w	LL	PI		Gs	$\gamma_{\rm d}$	σ	τ_{max}	φ	с
ΓEG	(m)	(%)	(%)	(%)	(%)		(kN/m ³)	(kPa)	(kPa)	(°)	(kPa)
		13.4					17.78	100	105		
$\Gamma 1 - \Delta 3$	5.10 - 5.50	13.5	23	6	48	2.65	17.65	200	189	32.3	49.0
		13.4					17.25	300	232		
		13.7					17.60	100	90		
$\Gamma 1 - \Delta 4$	7.00 - 7.30	13.0	NP	NP	49	2.66	17.46	200	177	38.7	12.1
		13.6					17.36	300	250		
Γ2 Δ5	8 20 8 60	17.3	ND	ND	15	2 60	16.71	100	103	40.2	23.0
$12 - \Delta 3$	0.30 - 0.00	17.0	INP	INP	43	2.09	17.09	200	201	40.2	23.0

_									18/ 8.									
	ΣΗ - ΔΕΙΓΜΑ	E	3ΑΘΟΣ	ΦΥΣΙΚΗ	VI PAZIA OPIO	ΥΔΑΡΟΤΗΤΑΣ	ΔΕΙΚΤΗΣ ΤΑ ΣΤΗΣΟΤΗΣ	11/A2/11K01H1A2 AIEPXOMENO	No.200	ΕΙΔΙΚΟ ΒΑΡΟΣ ΚΟΚΚΩΝ	EHPO ØAINOMENO	ΒΑΡΟΣ	ΚΑΤΑΚΟΡΥΦΗ ΤΑΣΗ	MFLISTH	AIATMHTIKH TAZH	ΓΩΝΙΑ	EZQTEPIKHZ TPIBHZ	ΣΥΝΟΧΗ
	TPH			W	L	L	Pl	[Gs	γ	1	σ		$ au_{ m max}$		φ	с
	$\Gamma E \Omega$		(m)	(%) (9	%)	(%) (%)		(kN/	/m ³	(kPa	.) (kPa)		(°)	(kPa)
				16.	.3						17.	25	300)	272			
				16.	.5						16.	81	100)	96			
	$\Gamma 2 - \Delta 6$	9.3	15 - 9.50	15.	.6 N	IΡ	NI	P 5	54	2.68	3 16.	68	200)	182	3	7.4	22.8
				15.	.9						16.	83	300)	249			
-	ΠΙΝΑ	K A	ΑΣ 5.5: Α	ЛС)TE/	ΙΕΣ	MA	ATA	ΔΟ	KIN	<u>1ΩN</u>	ΣΤ	EPE	ОПС	DIHΣ	ΞΗΣ	2	
	DEPHEH - AEIFMA		BAOO	Σ	ΦΥΣΙΚΗ ΥΓΡΑΣΙΑ	OPIO VAADOTHTAS		AEIKTHE IIAAETIKOTHTAE	APΓIΛΟΣ (<0.005mm)	ΕΙΔΙΚΟ ΒΑΡΟΣ νουγον	BA6MOE	NOFEZMOI	APXIKOΣ ΛΟΓΟΣ KENΩN		2YMIIIE2I0IHIA2	ΙΑΣΗ	ΤΑΣΗ ΔΙΟΓΚΩΣΗΣ	
	LEC				W			PI	(0/)	Gs	8	r	eo	C	2	P_c	σ _{SP}	<u> </u>
			(m)		(%)	(%) ((%)	(%)		(%	6)			()	kPa)	(kPa	.)
	Γ1 –	Δ2	3.00 - 3	.40	18. 7	53	;	35	50	2.7	0 91.	.42	0.55 3	0.09	98	-	<15	0
	$\Gamma 1 - \Delta$ $\Gamma 2 - \Delta$	Δ5	9.00 - 9	.30	15. 3	51		34	51	2.7	0 93.	.24	0.44 1	0.08	81	-	<15	0
		Δ2	3.45 - 3	.70	12. 3	35		21	34	2.6	9 91.	.04	0.37 1	0.05	58	-	<15	0
IINAKA	Σ 5.6: A	ПО	ΤΕΛΕΣ	MA	TAI	TPC	ΣΛ	IOP	ΙΣΝ	10 Y	Y ME	TP	ΟΥ Σ	YM	ΠΙΕ	ΣΤ	ОТН	ΤΑΣ]
	- 		ΒΑΘΟΣ								E _s (kH	Pa)						
	ΡΗΣΙ				τάση	τάσ	5 η	τάση	τάο	5η	τάση	τά	ση	τάση	τ	άση	τάσ	η
	2T				12.5	24	5	50	10	0	150	20	00	400	8	300	1 20	0

ΡΗΣ ΓM		τάση	τάση	τάση	τάση	τάση	τάση	τάση	τάση	τάση
ΩTI ΔEI		12.5	25	50	100	150	200	400	800	1 200
ΓE	(m)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)
$\Gamma 1 - \Delta 2$	3.00 - 3.40					8 065	10 613	12 698	17 598	
$\Gamma 1 - \Delta 5$	9.00 - 9.30					8 475	11 547	13 645	20 203	
$\Gamma 2 - \Delta 2$	3.45 - 3.70					12 195	14 334	20 202	25 283	

ΠΙΝΑΚΑΣ 5.7: ΣΥΓΚΕΝΤΡΩΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (POINT LOAD)

ΓΕΩΤΡΗΣΗ - ΔΕΙΓΜΑ	ΒΑΘΟΣ	ΕΙΔΟΣ ΠΕΤΡΩΜΑΤΟΣ	ΤΥΠΟΣ ΔΟΚΙΜΗΣ	ΑΡΙΘΜΟΣ ΔΟΚΙΜΙΩΝ	ΔΕΙΚΤΗΣ (¹)	ΙΣΟΔΥΝΑΜΗ ΜΟΝΟΑΞΟΝΙ ΚΗ ΘΛΙΨΗ (²)
					I _{s(50)}	σ_{c}
	(m)				(MPa)	(MPa)
Г1 / П1	10.15 – 10.30	Μάργα	ΔΙΑΜΕΤΡΙΚΗ	1	0.14	3.2
Г1 / П2	12.00 – 12.40	Μάργα	ΔΙΑΜΕΤΡΙΚΗ	1	0.12	2.7
Г2 / П1	14.90 – 15.00	Μάργα	ΔΙΑΜΕΤΡΙΚΗ	1	2.30	52.3
Г2 / П2	17.10 – 17.50	Μάργα	ΔΙΑΜΕΤΡΙΚΗ	1	0.22	5.1

(¹) $I_{s(50)} = I_s \times (D/50)^{0.45}$

 $(^2)$ σ_c = K x I_{s(50)} (όπου K συντελεστής που εξαρτάται από τη διάμετρο του δοκιμίου)

6. ΑΞΙΟΛΟΓΗΣΗ ΓΕΩΤΕΧΝΙΚΩΝ ΣΥΝΘΗΚΩΝ

6.1 Τυπική εδαφική τομή

Σύμφωνα με την τομή υπεδάφους των γεωτρήσεων, τα αποτελέσματα των επιτόπου και εργαστηριακών δοκιμών και την αξιολόγηση των γεωτεχνικών συνθηκών στη θέση της κατολίσθησης διακρίνονται οι ακόλουθες γεωτεχνικές στρώσεις:

Γεωτεχνική Στρώση GU-I: Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο (GC).

Γεωτεχνική Στρώση GU-IIa: Καστανή, στιφρή ΑΡΓΙΛΟΣ με άμμο, μέσης έως εξαιρετικά υψηλής πλαστικότητας (CL-CH).

Γεωτεχνική Στρώση GU-IIβ: Τεφρή, σκληρή ΑΡΓΙΛΟΣ με άμμο, μέσης πλαστικότητας (CL).

Γεωτεχνική Στρώση GU-III: Τεφρή, μέτρια πυκνή έως πυκνή ιλυώδης ΑΜΜΟΣ (SM-ML).

Τα βάθη εμφάνισης των γεωτεχνικών στρώσεων δίνονται στον Πίνακα 6.1. Πίνακας 6.1: ΒΑΘΟΣ ΕΜΦΑΝΙΣΗΣ ΓΕΩΤΕΧΝΙΚΩΝ ΣΤΡΩΣΕΩΝ ΣΕ (m)

ΓΕΩΤΕΧΝΙΚΗ	ΓΕΩΤΡΗΣΗ							
ΣΤΡΩΣΗ	Г1	Г2						
Ι	0.40(*) - 3.00	0.40(*) - 3.45						
Πα	3.00 - 5.00	3.45 - 6.00						
III	5.00 - 8.50	6.00 - 14.00						
Πβ	8.50 - 17.00 (**)	14.00 - 23.00 (**)						

(*) Υπερκείμενα συναντώνται τεχνητές επιχώσεις

(**) Πέρας γεώτρησης

6.2. Γεωτεχνικές ενότητες και μηχανικά χαρακτηριστικά

Παράμετροι σχεδιασμού

Οι παράμετροι σχεδιασμού των γεωτεχνικών στρώσεων προσδιορίζονται σύμφωνα με τα χαρακτηριστικά κατάταξης των εδαφικών δειγμάτων, τα αποτελέσματα των επιτόπου δοκιμών SPT, των εργαστηριακών δοκιμών αντοχής και βιβλιογραφικά.

Η αστράγγιστη διατμητική αντοχή cu (kPa) εκτιμάται από τη σχέση του Terzaghi.

$$c_{u} = \frac{\sum_{i=1}^{n} \left[\left(\frac{10N_{i}}{2} \right) + \frac{q_{ui}}{2} + c_{ui} \right]}{n}$$
(6.1)

Όπου:

 N_i : ο αριθμός κρούσεων ανά 30cm

 q_i : αντοχή σε ανεμπόδιστη θλίψη (kPa)

 c_{ui} : αστράγγιστη διατμητική αντοχή (kPa)

n : πλήθος δοκιμών

Οι χαρακτηριστικές τιμές, Xk, των παραμέτρων αντοχής προκύπτουν από την μέση τιμή μειωμένη κατά το μισό της τυπικής απόκλισης, ήτοι:

$$X_{k} = X_{m} - \frac{1}{2}\sigma_{n-1}$$
(6.2)

Για τον υπολογισμό των καθιζήσεων η τιμή του μέτρου συμπιεστότητας υπολογίζεται (J. E. Bowles "FOUNDATION ANALYSIS AND DESIGN" 5th edition, Table 5 - 6, p.p. 316).

Για άμμους:

 $E_{s} = 500 \times (N+15)$ (6.3)

Για κορεσμένες άμμους:

 $E_s = 250 \times (N + 15)$ (6.4)

Για ιλύς:

 $E_{s} = 300 \times (N+6)$ (6.5)

Για αργίλους:

$$E_{s} = 500 \times c_{u} \gamma_{la} q_{p} < 30$$
 (6.6)

Συνολικά και σύμφωνα με τις παραπάνω γεωτεχνικές στρώσεις που συναντήθηκαν στις εξεταζόμενες εδαφικές τομές διακρίνονται οι κάτωθι γεωτεχνικές ενότητες με τα μηχανικά χαρακτηριστικά τους, όπως προκύπτει από τη στατιστική επεξεργασία των επιτόπου ερευνών και της διεθνούς βιβλιογραφίας:

GU - I

Χαρακτηρισμός : Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο (GC).

καστάνα, μετρ	ταστάνα, μετρία ποκνά αργιλώση λεντιτίες με άμμο												
ΓΕΩΤΡΗΣΗ	ΒΑΘΟΣ	NSPT	NEPO	ΔΙΟΡΘΩΣΗ	ΔΙΟΡΘΩΣΗ	N*							
	(m)			ΛΟΓΩ	ΛΟΓΩ								
	()			ΥΔΑΤΩΝ	ΒΑΘΟΥΣ								
Г1	2,25	30	0	30	1,25	37,63							
Г2	3,25	23	0	23	1,13	26,02							

Καστανά	UÉTOIO	TUNA	anul (Sp		<i>.</i>
Ruoluvu.	มนารม	πυκνά	UDVIAUOII	зu	unno
,					

Πλήθος τιμών	N	2
Ελάχιστο	Xmin	26,02
Μέγιστο	Xmax	37,63
Μέση τιμή	Xm	31,82
Τυπική απόκλιση	S	8,21
Χαρακτηριστική τιμή	Xk	27,72

Σχετική πυκνότητα Dr κατά DIN4094 και εσωτερική γωνία τριβής κατά Bowles (1977)

a/a	N*	Dr	φ
1	37,63	0,761	39,41
2	26,02	0,705	38,58

Πλήθος τιμών	N	2
Ελάχιστο	Xmin	38,58
Μέγιστο	Xmax	39,41
Μέση τιμή	Xm	38,99
Τυπική απόκλιση	S	0,59
Χαρακτηριστική τιμή	Xk	38,70

Ενεργός γωνίας εσωτερικής τριβής (φ')

a/a	N*	φ	
1		38,70	Bowles (1977) - Dr κατά DIN4094
2	27,72	36,98	Shioi & Fukui (1982)
3		38,55	Oshaki (1962)
4		40,58	Meyerhof (1956)

N	4
Xmin	36,98
Xmax	40,58
Xm	38,70
S	1,47
Xk	37,96

Λαμβάνεται τιμή	φ=35 o

Μέτρο συμπιεστότητας Es

Το μέτρο συμπιεστότητας προκύπτει από τις κάτωθι εμπειρικές σχέσεις μέσω του αριθμού των διορθωμένων κρούσεων Ν* +: N>15

Tassios and Anagnostopoulos (1974)

 $E_s =$

□ Bowles (1987)

a/a	Es	_
1	44464,63	Tassios and Anagnostopoulos (1974)
2	37720,52	Παπαδόπουλος και Αναγνωστόπουλος (1987)
3	40464,63	Bowles (1987)

Ν	3
Xmin	37720,52
Xmax	44464,63
Xm	40883,26
S	3391,49
Xk	39187,51

Λαμβάνεται τιμή

Es=35000 kPa

-: N<15 $E_s = 40 + C(N * \pm 6)$

 $E_{s} = C1 + C2 \cdot N *$

GU - IIa

Χαρακτηρισμός : Καστανή, στιφρή ΑΡΓΙΛΟΣ με άμμο, μέσης έως εξαιρετικά υψηλής πλαστικότητας (CL-CH).

ΑΡΓΙΛΟΣ με άμμο,

ΓΕΩΤΡΗΣΗ	ΒΑΘΟΣ (m)	NSPT
Г1	4,25	24
-		
Πλήθος τιμών	N	1
Ελάχιστο	Xmin	24,00
Μέγιστο	Xmax	24,00
Μέση τιμή	Xm	24,00
Τυπική απόκλιση	S	0,00
Χαρακτηριστική τιμή	Xk	24,00

Αστράγγιστη διατμητική αντοχή Su

Μέση τιμή

Τυπική απόκλιση

Χαρακτηριστική τιμή

□ Με βάση τα εργαστηριακά αποτελέσματα αντοχής σε ανεμπόδιστη θλίψη

	a/a	qu (kPa)	Su (kPa)
	1	274,00	137,00
	2	803,00	401,50
Πλήθος τιμών		N	2
Ελάχιστο		Xmin	137,00
Μέγιστο		Xmax	401,50
Μέση τιμή		Xm	269,25

s Xk 187,03

175,74

Π Με βάση τον αριθμό κρούσεων Δοκιμής Πρότυπης Διείσδυσης κατά Terzaghi/Peck (1948)

 $S_u = 6.2 \cdot N$

a/a	N	Su (kPa)
1	24	148,80
	N	1
	Xmin	148,80
	Xmax	148,80
	Xm	148,80
	S	0,00
	Xk	148,80
	a/a 1	a/a N 1 24 N Xmin Xmax Xm S Xk

Λαμβάνεται τιμή

Μέτρο συμπιεστότητας Es

Το μέτρο συμπιεστότητας προκύπτει από τις κάτωθι εμπειρικές σχέσεις μέσω του αριθμού των

διορθωμένων κρούσεων Ν*

□ Menzenbach (1958)

 $E_{s} = 12 + 8N$ για ιλείς και ιλυώδεις άμμους με Ι₀<15% $E_{_S}=4+11.5N$ για ιλείς και αργιλικές ιλείς με Ι_p>15%

Bowles για κανονικά στερεοποιημένες αργίλους (1996)

$$\mathbf{E}_s = (200 \div 500) \times S_u$$

a/a	Es (kPa)	_
1	20400	Menzenbach (1958)
2	50750	Bowles (1996)

Πλήθος τιμών	N	2
Ελάχιστο	Xmin	20400,00
Μέγιστο	Xmax	50750,00
Μέση τιμή	Xm	35575,00
Τυπική απόκλιση	S	21460,69
Χαρακτηριστική τιμή	Xk	24844,65

Λαμβάνεται τιμή

GU - Πβ

Es=24500 kPa

Χαρακτηρισμός : Τεφρή, σκληρή ΑΡΓΙΛΟΣ με άμμο, μέσης πλαστικότητας (CL).

75

Τεφρή, σκληρή ΑΡΓΙΛΟΣ μέσης έως υψηλής πλαστικότητας. 🗆 ΓΕΩΤΡΗΣΗ ΒΑΘΟΣ (m) NSPT Г1 10,25 75 13,75 50

16.00

Г2	16,00	50
Πλήθος τιμών	N	4
Ελάχιστο	Xmin	50,00
Μέγιστο	Xmax	75,00
Μέση τιμή	Xm	62,50
Τυπική απόκλιση	S	14,43
Χαρακτηριστική τιμή	Xk	55,28

Su=145 kPa

Αστράγγιστη διατμητική αντοχή Su

Με βάση τα εργαστηριακά αποτελέσματα αντοχής σε ανεμπόδιστη θλίψη

$$S_u = \frac{q_u}{2}$$

a/a	qu (kPa)	Su (kPa)
1	435,00	217,50
	489,00	244,50
2	788,00	394,00
	2718,00	-
	3135,00	-

Πλήθος τιμών	N	3
Ελάχιστο	Xmin	217,50
Μέγιστο	Xmax	394,00
Μέση τιμή	Xm	285,33
Τυπική απόκλιση	S	95,07
Χαρακτηριστική τιμή	Xk	237.80

 Με βάση τον αριθμό κρούσεων Δοκιμής Πρότυπης Διείσδυσης κατά Terzaghi/Peck (1948)

$$S_u = 6.2 \cdot N$$

a/a	Ν	Su (kPa)
1	75	465,00
2	50	310,00
3	75	465,00
4	50	310,00

Πλήθος τιμών	N	4
Ελάχιστο	Xmin	310,00
Μέγιστο	Xmax	465,00
Μέση τιμή	Xm	387,50
Τυπική απόκλιση	S	89,49
Χαρακτηριστική τιμή	Xk	342,76

Λαμβάνεται τιμή

Su=235 kPa

Μέτρο συμπιεστότητας Es

Το μέτρο συμπιεστότητας προκύπτει από τις κάτωθι εμπειρικές σχέσεις μέσω του αριθμού των

διορθωμένων κρούσεων Ν*

In Menzenbach (1958)

$$E_{s} = 12 + 8N$$

για ιλείς και ιλυώδεις άμμους με Ι_⊳<15%

 $E_s = 4 + 11.5N$

για ιλείς και αργιλικές ιλείς με Ι_ρ>15%

Bowles για κανονικά στερεοποιημένες αργίλους (1996)

$$E_{s} = (200 \div 500) \times S_{u}$$

a/a	Es (kPa)	_
1	45426	Menzenbach (1958)
2	82250	Bowles (1996)

Πλήθος τιμών	N	2
Ελάχιστο	Xmin	45426,50
Μέγιστο	Xmax	82250,00
Μέση τιμή	Xm	63838,25
Τυπική απόκλιση	S	26038,15
Χαρακτηριστική τιμή	Xk	50819,17

Λαμβάνεται τιμή

Es=55000 kPa

GU - III

Χαρακτηρισμός : Τεφρή, μέτρια πυκνή έως πυκνή ιλυώδης ΑΜΜΟΣ (SM-ML).

Τεφρή, μέτρια πυκνή έως πυκνή ιλυώδης ΑΜΜΟΣ						
ΓΕΩΤΡΗΣΗ	BAΘOΣ (m)	NSPT	NEPO	ΔΙΟΡΘΩΣΗ ΛΟΓΩ ΥΔΑΤΩΝ	ΔΙΟΡΘΩΣΗ ΛΟΓΩ ΒΑΘΟΥΣ	N*
Г1	6,25	27	0	27	0,93	25,10
	8,25	51	0	51	0,84	42,68
Г2	7,25	50	0	50	0,88	44,01
	9,00	75	0	75	0,81	60,59
	11,50	50	0	50	0,73	36,29
	13,75	50	0	50	0,67	33,31

Πλήθος τιμών	Ν	6
Ελάχιστο	Xmin	25,10
Μέγιστο	Xmax	60,59
Μέση τιμή	Xm	40,33
Τυπική απόκλιση	S	12,06
Χαρακτηριστική τιμή	Xk	34,30

Σχετική πυκνότητα Dr κατά DIN4094 και εσωτερική γωνία τριβής κατά Bowles (1977)

a/a	N*	Dr	φ
1	25,10	0,700	38,50
2	42,68	0,780	39,70
3	44,01	0,784	39,77
4	60,59	0,833	40,49
5	36,29	0,755	39,33
6	33,31	0,742	39,14

Πλήθος τιμών	N	6
Ελάχιστο	Xmin	38,50
Μέγιστο	Xmax	40,49
Μέση τιμή	Xm	39,49
Τυπική απόκλιση	S	0,67
Χαρακτηριστική τιμή	Xk	39,15

Ενεργός γωνίας εσωτερικής τριβής (φ')

a/a	IN	Ψ	_
1		39,15	Bowles (1977) - Dr κατά DIN4094
2	34,30	39,35	Shioi & Fukui (1982)
3		41,19	Oshaki (1962)
4		40,50	Meyerhof (1956)

Ν	4
Xmin	39,15
Xmax	41,19
Xm	40,05
S	0,97
Xk	39,56

Λαμβάνεται τιμή

φ=32 o

ΓΕΩΤΕΧΝΙΚΟ ΠΡΟΣΟΜΟΙΩΜΑ ΣΧΕΔΙΑΣΜΟΥ

Με βάση τα εδαφικά χαρακτηριστικά συντάσσεται το τυπικό γεωτεχνικό προσομοίωμα σχεδιασμού το οποίο χρησιμοποιείται στους υπολογισμούς για τη γεωτεχνική μελέτη της αντιστήριξης και θεμελίωσης. Σημειώνεται ότι το πάχος των στρώσεων καθορίζεται από το υψόμετρο της διατομής σε σύγκριση με το υψόμετρο των Γεωτρήσεων.

1. Διατομή 2 - Γεώτρηση Γ1

α/α	Τύπος εδάφους	Υψόμετρο (m)
	Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο (GC). Αριθμός κρούσεων N _{SPT} = 23-30	
[1]	φ' = 350	
	$c^{*} = 0.5 \text{ kPa}$ Es = 35000 kPa	
		-3.00
	Καστανή, στιφρή ΑΡΓΙΛΟΣ με άμμο, μέσης έως εξαιρετικά υψηλής πλαστικότητας (CL-	
	CH). Αριθμός κρούσεων $N_{SPT} = 24$	
[llɑ]	φ'=250	
	c' = 25 kPa Es = 24500 kPa	
	Cu = 145 kPa	-5.00
	Τεφοή, μέτοια πυκνή έως πυκνή ιλυώδης ΑΜΜΟΣ (SM-ML)	
	Αριθμός κρούσεων $N_{SPT} = 27 - >50$	
[11]	$\varphi' = 320$	
	C = 10-15 kPa Es = 19500 kPa	
		-8.50
	Τεφρή, σκληρή ΑΡΓΙΛΟΣ με άμμο , μέσης πλαστικότητας (CL).	
	Αρτόμος κρούσεων $N_{SPT} = >50$ φ' = 260	
[ΙΙβ]	c' = 50 kPa	
	Es = 55000 kPa Cu = 235 kPa	
	0 <i>u</i> - 200 ki u	-πέρας

Στάθμη υδροφόρου ορίζοντα : Δεν εντοπίστηκε.

7. ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ

Σύμφωνα με τον ισχύοντα Ελληνικό Αντισεισμικό Κανονισμό Ε.Α.Κ. - 2000, § 5.4.2 [1] και την τροποποίηση του λόγω αναθεώρησης του Χάρτη Σεισμικής Επικινδυνότητας (Φ.Ε.Κ. 1154B/12.08.2003) και το χάρτη Ζωνών Σεισμικής Επικινδυνότητας, ο Δήμος Κεφαλονιάς, Ν. Κεφαλληνίας ανήκει στη Ζώνη Σεισμικής Επικινδυνότητας ΙΙΙ, Σχήμα 4. Η οριζόντια σεισμική επιτάχυνση του εδάφους είναι Α = α • g, όπου α η εδαφική επιτάχυνση ανηγμένη στην επιτάχυνση της βαρύτητας.

Στην προκειμένη περίπτωση για τη Ζώνη ΙΙΙ είναι α = 0.36 και συνεπώς η σεισμική επιτάχυνση εδάφους A = 0.36g (EAK 2000. §2.3.3) για προσδιορισμό της Φασματικής επιτάχυνσης σχεδιασμού $\Phi_d(T)$, σύμφωνα με $\Phi_d(T)/A\gamma_1$ από το φάσμα σχεδιασμού (EAK 2000. §2.3.1). Η ανωτέρω τιμή σεισμικής επιτάχυνσης εδάφους εκτιμάται σύμφωνα με τα σεισμολογικά δεδομένα, ότι έχει πιθανότητα υπέρβασης 10% στα 50 χρόνια (EAK 2000, §2.3.3 [4]).

Το έργο κατατάσσεται στην κατηγορία σπουδαιότητας Σ2 και ως εκ τούτου ο Συντελεστής Σπουδαιότητας $\gamma_1 = 1.00$. Το υπέδαφος θεμελίωσης που απαντάται στην περιοχή έρευνας κατατάσσεται στην κατηγορία εδαφών Γ. Συνεπώς θα ληφθούν τιμές των Χαρακτηριστικών Περιόδων $T_1 = 0.20$ sec και $T_2 = 0.80$ sec (ενεργές τιμές), και του Συντελεστή Θεμελίωσης $\theta = 1.00$.

Σχήμα 4. Χάρτης Ζωνών Σεισμικής Επικινδυνότητας της Ελλάδος.

8. ΓΝΩΜΑΤΕΥΣΕΙΣ - ΕΛΕΓΧΟΙ ΕΥΣΤΑΘΕΙΑΣ

Οι έλεγχοι ευστάθειας γίνονται με το πρόγραμμα Η/Υ PLAXIS 2012, σύμφωνα με τη μέθοδο των πεπερασμένων στοιχείων. Εξετάζονται διάφορες επιφάνειες ολίσθησης και προσδιορίζεται η επιφάνεια με τον ελάχιστο συντελεστή ασφαλείας με τη μέθοδο της σταδιακής απομείωσης της συνοχής του εδάφους.

8.1. Ανάστροφες αναλύσεις

Η αξιολόγηση της ευστάθειας της περιοχής του έργου προσεγγίζεται αφενός με την ανάλυση σε στατικές και δυναμικές συνθήκες, αφετέρου από σειρά ανάστροφων αναλύσεων για τον προσδιορισμό των παραμέτρων αντοχής και των συνθηκών εκδήλωσης (π.χ. παρουσία νερών) της αστοχίας στην περιοχή.

Αρχικά λαμβάνονται οι παράμετροι χαρακτηριστικής αντοχής όπως αυτοί προσδιορίστηκαν από την εργαστηριακή έρευνα και στη συνέχεια εφόσον χρειαστεί μεταβάλλονται η στάθμη των υδάτων και

τα μηχανικά χαρακτηριστικά των εδαφοτεχνικών στρώσεων με σκοπό την εκδήλωση αστοχίας παρόμοιας με αυτή που εκδηλώθηκε και οριακός συντελεστής ασφαλείας περίπου ίσος με τη μονάδα.

Αρχείο	Περίπτωση φόρτισης	Συντελεστής ασφαλείας S.F.	Ελάχιστος απαιτούμενος συντελεστής ασφαλείας min S.F.	Έλεγχος
	Δ	ιατομή 2		
2017_KEFALONIA_WALL_R4 _BACK	GEO	1.04	1.00	Κύκλος ολίσθησης ποδός

Πίνακας 8.1. ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΝΑΣΤΡΟΦΩΝ ΑΝΑΛΥΣΕΩΝ

Οι πραγματοποιούμενες ανάστροφες αναλύσεις κατέδειξαν ότι η διατομή ενδιαφέροντος δεν πληροί τις συνθήκες ασφάλειας σύμφωνα με τον κανονισμό.

8.2. Περιγραφή εκδηλωθείσας κατολίσθησης

Στην επαφή κροκαλοπαγών και μάργων εμφανίζονται μικροπηγές στις οποίες εκφορτίζονται οι υδροφόροι των κροκαλοπαγών. Πηγή επαφής των κροκαλοπαγών και των αργιλομαργών είναι και η πηγή που αναβλύζει σε μικρή απόσταση ανάντη του δρόμου και του μετώπου της κατολίσθησης (περίπου 5 μέτρα από τον δρόμο). Στη θέση αυτή την τρέχουσα υγρή περίοδο κατέληξαν σημαντικές ποσότητες νερού τόσο από την ανάντη πηγή όσο και από την αποστραγγιστική αύλακα του δρόμου. Αυτό έχει σαν αποτέλεσμα τον απότομο εμποτισμό των υλικών των επιχωμάτων του δρόμου και τη μείωση της διατμητικής αντοχής τους. Στην θέση της αστοχίας υπάρχει τεχνικό αποστράγγισης των όμβριων και της πηγής Το σωληνωτό δεν είναι στην βάση του οδοστρώματος αλλά στο ανώτερο μέρος του επιχώματος με αποτέλεσμα το νερό που εξέρχεται από τους σωλήνες να δημιουργεί στα κατάντη καταρράκτη και έντονη διάβρωση. Η απορροή σημαντικών ποσοτήτων νερού και ο εμποτισμός του αποσαθρωμένου μανδύα των αργιλομαργαϊκών στρωμάτων στα κατάντη, δημιούργησαν φαινόμενα αστάθειας λόγω διόγκωσης των υλικών. Τα υλικά του επιγώματος ολίσθησαν επί των υποκείμενων αργιλομαργαϊκών υλικών με αποτέλεσμα την δημιουργία κατολίσθησης και λασποροής στα κατάντη σε μήκος περίπου 80 μέτρα και εύρους 15-20 μέτρων. Οι μεγάλες κλίσεις των πρανών ευνόησαν επίσης την δημιουργία και την ένταση των κατολισθητικών φαινομένων.

8.3. Περιγραφή μέτρων αποκατάστασης

Παρακάτω περιγράφονται τα προτεινόμενα μέτρα αποκατάστασης σύμφωνα με την πορεία εργασιών τους:

Διατομή 2

- Απομάκρυνση των διαταραγμένων επιφανειακών στρώσεων έως βάθος περίπου 2.0m
 και διαμόρφωση επιπέδου εργασίας με αναβαθμούς αγκύρωσης για την κατασκευή
 των μικροπασσάλων. Παράλληλα γίνεται η διαμόρφωση των ραμπών στις ακραίες
 περιοχές του έργου. Η απομάκρυνση του υλικού γίνεται υπό στραγγισμένες συνθήκες
 (κατά τη διάρκεια των καλοκαιρινών μηνών).
- Κατασκευή πασσαλοσυστοιχίας μήκους 30.00m κατά μήκος της οριογραμμής της νέας οδού με σύμμικτους πασσάλους διαμέτρου D=0.35m, ανά s=1.00m και βάθους

έμπηξης L=10m. Η σύμμικτη διατομή διαμορφώνεται με την έμπηξη μεταλλικής δοκού διατομής HEB160 εντός σπείρας συνδετήρων και προστίθεται σκυρόδεμα. Λαμβάνεται μέριμνα για την αγκύρωση της κεφαλής των μεταλλικών δοκών εντός του πέλματος του νέου τοίχου αντιστήριξης με την συγκόλληση ειδικών τεμαχίων σύμφωνα με τα επισυναπτόμενα σχέδια. Τα μεταλλικά μέλη να είναι άβαφα.

- Κατασκευή νέου τεχνικού πλάτους 1.0m στη θέση του παλαιού σε στάθμη κάτω από το νέο τοίχο αντιστήριζης.
- Τοποθέτηση μιας σειράς συρματοκιβωτίων για την έδραση του νέου τοίχου.
- Κατασκευή τοίχου αντιστήριζης ύψους H=2.60m και πέλματος πλάτους B=3.40m, με την προσθήκη χαλινού. Το πέδιλο του τοίχου θα χρησιμοποιηθεί για τον εγκυβωτισμό και σύνδεση των κεφαλών των σύμμικτων μικροπασσάλων.
- Επίχωση της περιοχής (περιοχή οδοστρώματος) με επίλεκτα υλικά τύπου Ε3 ή Ε4 (ΠΕΤΕΠ 02-07-01-00) έως τη Στρώση Έδρασης Οδοστρώματος (Σ.Ε.Ο.).
- Τα νερά που συλλέγονται από το τεχνικό και την ανοικτή τάφρο οδηγούνται με διαμόρφωση επαρκών κλίσεων κατάντη του πρανούς.
- Καθαρισμός του ανάντη πρανούς από χαλαρά επιφανειακά υλικά
- Κατασκευή ανοικτής επενδεδυμένης τάφρου για την απορροή των όμβριων υδάτων στο τεχνικό.

8.4. Έλεγχοι ευστάθειας διατομών με μέτρα αντιστήριξης

Ελέγχεται η ευστάθεια του πρανούς ορύγματος κρίσιμης διατομής κατά μήκος της χάραξης της οδού και αφορά το γενικό συντελεστή ασφαλείας συνολικά.

Διατομή 2 - Τομή Γεώτρησης Γ1

Οι ακόλουθες παραδοχές γίνονται για το υλικό του πρανούς και τη φόρτιση:

- Οι παράμετροι μηχανικής αντοχής σχεδιασμού των γεωτεχνικών στρώσεων λαμβάνονται όπως στην § 4.2.2. με την χρήση μειωτικών συντελεστών ασφαλείας σύμφωνα με την μέθοδο DA-3 του ευρωκώδικα 7. Στην περίπτωση σεισμικής δράσης τα μηχανικά χαρακτηριστικά σχεδιασμού εδάφους λαμβάνονται με τις χαρακτηριστικές τους τιμές σύμφωνα με την μέθοδο ανάλυσης DA-2* του ευρωκώδικα 7.
- Οριζόντια σεισμική φόρτιση σχεδιασμού εκσκαφής $ah = 0.5 \times 0.36 = 0.18$ και Κατακόρυφη σεισμική φόρτιση σχεδιασμού λαμβάνεται $aV = 0.5 \times (0.5 \times 0.36) = 0.5 \times 0.18 = 0.09$.
- Ο απαιτούμενος συντελεστής ασφαλείας για το γενικό συντελεστή ασφαλείας ευστάθειας πρανών για συνήθεις συνθήκες φόρτισης χωρίς σεισμική δράση χωρίς ή με την παρουσία νερού είναι S.F. = 1.40 και 1.30, αντίστοιχα, για την εφαρμογή της μεθόδου DA-3 και για την περίπτωση εφαρμογής σεισμικής δράσης είναι S.F. = 1.10 για την εφαρμογή της μεθόδου DA-2* (EQ).

Τα αποτελέσματα του ελέγχου ευστάθειας δίνονται συγκεντρωτικά στον πίνακα 6-3 και αναλυτικά στο Παράρτημα Δ. Εξετάζεται η δυσμενέστερη από τις ακόλουθες περιπτώσεις όσον αφορά στις συνθήκες φόρτισης:

\mathbf{R} \mathbf{U}	ωι κυ		0105a			ιευχος	, 1 1 - 1	$\Pi U = $
α/α Συνδυασμού	1	2	3	4	5	6	7	8
Σεισμός	Ν	Ν	Ν	Ν	0	0	0	0
Ανώτατη στάθμη υπόγειου ορίζοντα 50-	Ν	Ν	0	0	Ν	Ν	0	0
ετίας								
Αστοχία αγωγών αποστράγγισης	Ν	0	0	Ν	Ν	0	0	Ν
Απαιτούμενος συντελεστής ασφαλείας	-	-	1.0	-	1.2	1.3	1.4	-

Πίνακας 8.2 Συντελεστές ασφαλείας για αποκατάσταση κατολισθήσεων (ΟΜΟΕ Τεύχος 11 - Πίν 4.7)

 $\label{eq:Nal} N: N \alpha \iota - O: `Όχι$$ Πίνακας 8.3 ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΛΕΓΧΩΝ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ ΜΕ ΤΑ ΜΕΤΡΑ ΑΠΟΚΑΤΑΣΤΑΣΗΣ$$$

Αρχείο	Περίπτωση φόρτισης	Συντελεστής ασφαλείας S.F.	Ελάχιστος απαιτούμενος συντελεστής ασφαλείας min S.F.	Έλεγχος
	Διατομή 2			
2017_KEFALONIA_WALL_R4_COMB3	COMB3	1.38	1.10	OK
	COMB6	1.35	1.30	OK
	COMB7	1.63	1.40	OK

Η ευστάθεια της διατομής μετά τα μέτρα αποκατάστασης κρίνεται **επαρκής** για στατικές και δυναμικές συνθήκες φόρτισης.

Πάτρα 10/08/2017 ΥΠΕΥΘΥΝΟΣ ΓΕΩΤΕΧΝΙΚΩΝ ΜΕΛΕΤΩΝ ΚΑΙ ΝΟΜΙΜΟΣ ΕΚΠΡΟΣΩΠΟΣ

ΚΩΣΤΑΣ ΠΑΝΤΕΛΟΠΟΥΛΟΣ Πολιτικός Μηχανικός

Αργοστόλι / / 2017	Αργοστόλι / / 2017
	Η ΑΝΑΠΛΗΡΩΤΡΙΑ ΠΡΟΪΣΤΑΜΕΝΗ ΤΟΥ
Ο ΕΠΙΒΛΕΠΩΝ	ΤΜΗΜΑΤΟΣ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ Π.Ε.
	ΚΕΦΑΛΛΗΝΙΑΣ
ΛΑΜΠΡΟΣ ΝΙΚΟΛΑΟΥ	ΔΙΟΝΥΣΙΑ ΚΑΚΟΝΥΚΤΗ
Γεωλόγος	Πολιτικός Μηχανικός

Αργοστόλι / / 2017

Ο ΑΝΑΠΛΗΡΩΤΗΣ ΠΡΟΪΣΤΑΜΕΝΟΣ ΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Π.Ε. ΚΕΦΑΛΛΗΝΙΑΣ

> ΝΙΚΟΛΑΟΣ ΑΝΔΡΕΑΤΟΣ Πολιτικός Μηχανικός

ΠΑΡΑΡΤΗΜΑ Α

ΤΟΠΟΓΡΑΦΙΚΟ ΔΙΑΓΡΑΜΜΑ ΘΕΣΕΙΣ ΕΚΤΕΛΕΣΗΣ ΓΕΩΤΡΗΣΕΩΝ

ΠΑΡΑΡΤΗΜΑ Β

ΓΕΩΤΡΗΣΕΙΣ

- ΤΟΜΕΣ ΥΠΕΔΑΦΟΥΣ
- ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ

VPUORIETPO KEGAARE : HEAD ELEVATION ΘΕΣΗ ΓΕΩΤΡΗΣΗΣ - BORING LOCATION : KEΦΑΛΟΝΙΑ KEΦΑΛΟΝΙΑ HMNIA 1177 ATTERBERG OPIA STREET OPIA ATTERBERG OPIA Street OPIA ATTERBERG Street Street Street Street OPIA Street OPIA Street Street Street OPIA Street OPIA Street Street Street OPIA Street OPIA Street Street Street OPIA Street OPIA Street Street Street OPIA Street Street Street OPIA Street OPIA Street <th< th=""><th>1 - 1</th><th>BORING</th><th colspan="6"></th></th<>	1 - 1	BORING						
ПЕРІГРАФН - DESCRIPTION U U V VOKKOMETPIKH ANA/VZH - GRAIN SIZE ANALYSIS Model of the second sec	1/7/2017 ΦΥΛΛΟ : SHEET	НМ/NIA 11/7/2017 ФҮЛЛО : DATE SHEET	: 1-1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	POI ANTOXHΣ I PARAMETERS		CLASSIFICATION TAΣΗ ΔΙΟΓΚΩΣΗΣ					
Image: Normal degree in the synthetic series of the synthetic series o	φ c' φ' <u>č</u>	ΤΥΠΟΣ ς φ ς' φ' ΩΟ ΔΟΚ.	S σ _{sp}					
Πρόσφατες επιχώσεις 0.40 0 1 <td>(°) kPa (°) <</td> <td>TEST TYPE kPa (°) kPa (°)</td> <td>۲ (kPa)</td>	(°) kPa (°) <	TEST TYPE kPa (°) kPa (°)	۲ (kPa)					
Кастачай, μέτρια πυκνά αργιλώδη 1 1 93 87 77 72 62 53 39 30 11 29 14 15 1 15 1 15								
Καστανή, στιφρή ΑΡΓΙΛΟΣ με άμμο, εξαιρετικά υψηλής πλαστικότητας 3 Δ2 24 100 100 94 89 73 50 17,8 53 18 35 2,70 274 15,0 0,098 <t< td=""><td>G</td><td>GC</td><td>3C</td></t<>	G	GC	3C					
Τεφρή, μέτρια πυκνή έως πυκνή 5 Δ3 27 100 100 99 48 13,4 23 17 6 2,65 Τεφρή, μέτρια πυκνή έως πυκνή 7 Δ4 27 100 100 100 49 13,4 23 17 6 2,65 0 0 0 32 Νμώδης ΑΜΜΟΣ. 7 Δ4 27 100 100 100 49 13,4 NP NP NP 2,66 0 0 0 32	CI	CH	СН 100-150					
	32,3 SC- 38,7 S ^I	DS 49,0 32,3 SC-S DS 12,1 38,7 SN	SM					
8 74 51 100 100 98 51 15,3 51 17 34 2,70 726 8,1 0,081	C	CF	СН 100 - 150					
Πλού Νού Γρος: 10.00 10 T APNHEH	c c							
Πέρας γεώτρησης 17.00m ¹⁸ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁰ ¹⁹ ¹⁰	Τ, Π : Βραχώδης Πυρήνα	α, Τ : Δείγμα SPT, Π : Βραχώδης Πυρήνας ΩΝ Α.Ε.	ας ΞΛΙΔΑ : Β-΄					

ΣΥΝΤΕΤΑΓΜΕΝΕΣ : X = COORDINATES $Ψ$ =										Т	OM	нг	ΞΩΤΙ	ΡΗΣ	HΣ - B	ORIN	IG	PRC	FIL	E										PHΣH : IG		Г	- 2		
ΥΨΟΜΕΤΡΟ ΚΕΦΑΛΗΣ : Η ΕΑ ΕΙ ΕΥΑΤΙΟΝ	ΘΕ	ΕΣΗ ΓΕΩ	ΩΤΡΗΣ	HΣ - BOR	RING	LOCA	TION	:	ΚΕΦΑ	VON	A																			A 12-	-13/7/2	2017	ΦΥΛ	ΛΟ : ET	1 - 2
ΠΕΡΙΓΡΑΦΗ - DESCRIPTION	MH RING	<u>ΘΟΣ</u> ΡΤΗ	IFMA APLE	SPT		К	ЭККО	MET	PIKH A	ΝΑΛ	ΥΣΗ -	GRAIN	I SIZE /	ANALY	SIS	ΦΥΣΙΚΗ ΥΓΡΑΣΙΑ ΝΑΤURALWATER CONTENT	AT AT	OPI/ TERB TERB LIMIT	A BERG BERG TS	EIΔΙΚΟ ΒΑΡΟΣ SPESIFIC GRAVITY	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ - DRY BULK UNIT WEIGHT	OPFANIKA ORGANICS	ANTOXH ΣΕ ANEMITOΔΙΣΤΗ ΘΛΙΨΗ	UNCOFINDED COMPRESSION STRENGTH	ΔΟΥ ΣΗΜΕ ΦΟΡ΄ ΡΟΙΝΤ ΤΕ	κίμη Ιακής Γίσης Load St	ΔΟΙ ΣΥΜΠΙΙ ΤF OEDO TE	KIMH EΣOME- POY METER EST	ПА STR	PAMET ENGTH	POI A I PAR/	NTOXH AMETE	- <u>Forizi</u> IΣ IRS	KATATAEH CLASSIFICATION	ΤΑΣΗ ΔΙΟΓΚΩΣΗΣ
	BOL	BA DE	ΔEI SAN				$\begin{array}{c c c c c c c c c c c c c c c c c c c $												P _c	ΤΥΠΟΣ ΔΟΚ.	с	φ	c'	φ'	scs	σ_{sp}									
				N/30cm	2"	1 1/2"	1"	3/4"	1/2"	3/8"	No4	No10	No40	No200	<0.005m	m %	%	%	%		kN/m ³	%	kPa	%	MPa	MPa		kPa	TEST TYPE	kPa	(°)	kPa	(°)	AL	(kPa)
Πρόσφατες επιχώσεις 0.40																																			
Καστανά, μέτρια πυκνά αργιλώδη ΧΑΛΙΚΙΑ με άμμο . 3.45		2 3	Δ1)) T1	23	51	46	45	42	36	35	32	29	24	17		5	23	13	10															GC	
Καστανή, στιφρή αμμώδης ΑΡΓΙΛΟΣ		4	Δ2								100	100	99	67	34	12,4	35	11	24	2,69			803	15,0			0,058							CL	100 - 150
Τεφρή, σκληρή αμμώδης ΑΡΓΙΛΟΣ μέσης πλαστικότητας		5	Δ3 12	87							100	100	100	55		11,1	29	16	13				354	3,4										CL	
			Δ4 T3	> 50							100 100	99 100	96 100	35 45		17,9	NP	NP	NP	2,69									DS	23,0	40,2			SM SM	
Τεφρή, πολύ πυκνή ιλυώδης ΑΜΜΟΣ . Περιέχει ορίζοντες αμμώδους ιλύος σε βάθη 9.15m - 10.00m και 13.10m -		9	Δ6	ΑΡΝΗΣΗ							100	100	99	54		16,0	NP	NP	NP	2,68									DS	22,8	37,4			ML	
13.50m		10	_∆7							100	100	99	97	46		13,5	NP	NP	NP															SM	
		12 -		> 50						100	100	99	96	59		12 1	NP	NP	NP															МІ	
14.00		14	Т 6	> 50												,.																			
Τεφρή, σκληρή ΑΡΓΙΛΟΣ υψηλής πλαστικότητας. Περιέχει ορίζοντες σκληρής μάρνας σε βάθη 14.00m -		15	Δ9 Σ T7	> 50							100	100	100	95		12,9	39	16	23				788	5,0	2,3	52,3								CL	
σκληρής μάργας σε βάθη 14.00m - 15.30m και 16.80m - 17.70m.		17 18 19	_⊓2																						0,22	5,1									
συνεχίζεται 23.00		20	Δ10							100	100	100	99	97	37	11,3	48	17	31	2,69			2718	3,2									I	CL	
	ΠΑΡΑ													ΥΠΟΜΝΗΜΑ : Δ : Δείγμα φραγμού, Α : Αδιατάρακτο δείγμα,								ια, Τ : Δεί	γµα SP	δης Πυ	ρήνας										
ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΚΕΝΤΡΙΚΟ: ΛΕΤΡΙΝΩΝ 8, Τ. Κ. 27100 ΠΥΡΓΟΣ	REMA EPFO	MARKS ΤΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΎΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΎ ΑΓ. ΓΕΩΡΓΙΟΣ -												LEG	END DAOTH:	Σ:												ΣΕΛΙΔ/	A: B-2						
ΥΠΟΚ/ΜΑ: ΠΑΡ. ΔΙΟΔΩΡΟΥ 160, Τ.Κ. 26443 ΠΑΤΡΑ	PROJ	ECT									ΚΑΠΑ	ΝΔΡΙΤΙ								CLIE	NT						ΣΙΓΜΑ	ΜΕΛΕΤ	ΩN A.E.					PAGE	_

ΣΥΝΤΕΤΑΓΜΕΝΕΣ : X = COORDINATES $Ψ$ =									Т	ON	ΗΓ	ΕΩΤ	ΈΗΣ	ΗΣ - Β(ORIN	IG F	PRO	FIL	.E									ΓEΩTF BORIN	PHΣH : G	- 2				
ΥΨΟΜΕΤΡΟ ΚΕΦΑΛΗΣ : HEAD ELEVATION	Θ	ΕΣΗ ΓΕ	ΩΤΡΗΣ	ΈΗΣ - ΒΟΡ	RING LC	CATI	ION :	KE	ΦΑΛΟΝ	IIA																		HM/NIA DATE	12-	13/7/2	2017	ΦΥΛ/ SHEE	\O : T	2 - 2
ΠΕΡΙΓΡΑΦΗ - DESCRIPTION	OMH PRING	λΘΟΣ ΕΡΤΗ	eifma MPLE	SPT		KOł	KOME	TPIKI	Η ΑΝΑΛ	ΥΣΗ ·	- GRAIN	N SIZE	ANALY	'SIS	ΦΥΣΙΚΗ ΥΓΡΑΣΙΑ NATURALWATER	AT AT	OPIA TERB TERB LIMIT	A BERG BERG TS	EIΔΙΚΟ ΒΑΡΟΣ SPESIFIC GRAVITY	EHPO ΦΑΙΝΟΜΕΝΟ BAPOΣ - DRY BULK UNIT WEIGHT	OPFANIKA ORGANICS	ANTOXH ZE ANEMIOΔIZTH ΘΛΙΨΗ	UNCOFINDED COMPRESSION STRENGTH	ΔΟΗ ΣΗΜΕ ΦΟΡ' ΡΟΙΝΊ ΤΕ	Kimh EiakhΣ TiΣhΣ T Load Est	ΔΟΗ ΣΥΜΠΙΕ TP OEDOI TE	KIMH ΞΣΟΜΕ- ΟΥ ΜΕΤΕR ΞST	ПАР STRI	PAMET ENGTH	Σ RS	KATATAEH CLASSIFICATION	ΤΑΣΗ ΔΙΟΓΚΩΣΗΣ		
	P OB	D B	ΔE SA			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										Pc	ΤΥΠΟΣ ΔΟΚ.	с	φ	c'	φ'	SSS	$\sigma_{\sf sp}$											
				N/30cm	2" 1	1/2"	1" 3/4	" 1/2	2" 3/8"	No4	No10	No40	No200) <0.005mm	n %	%	%	%		kN/m ³	%	kPa	%	MPa	MPa		kPa	TEST TYPE	kPa	(°)	kPa	(°)	AL	(kPa)
Τεφρή, σκληρή ΑΡΓΙΛΟΣ υψηλής πλαστικότητας. Περιέχει ορίζοντες σκληρής μάργας σε βάθη 14.00m - 15.30m και 16.80m - 17.70m. 23.00		20	Δ11							100	100	99	98		12,0	9 46	17	29				3135	3,5										CL	
Πέρας γεώτρησης 23.00m		23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40																																
ΓΕΩΔΟΜΗ ΓΕΩΤΕΧΝΙΚΕΣ ΕΡΕΥΝΕΣ-ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΥΟΥ	REM	ARKS																	LEG		۹.	<u> 13</u> Т. Т.	γμα φρ	σαγμου,	A : A0I	αταρακτ	ιο οείγμ	и, і : ДЕІ	μα 5Ρ	ı,ıı:E	σραχως	πις πυρ	πινας	
ΚΕΝΤΡΙΚΟ: ΛΕΤΡΙΝΩΝ 8, Τ. Κ. 27100 ΠΥΡΓΟΣ ΥΠΟΚ/ΜΑ: ΠΑΡ. ΔΙΟΔΩΡΟΥ 160, Τ.Κ. 26443 ΠΑΤΡΑ	EPFC PROJ	ECT	ΓΕΩ	TEXNIKH	EPEYNA	& ME	EVELH P	KATE	ΊΕΙΓΟΥΣ	άς αν κάπ	ΙΤΙΜΕΤΩ ΑΝΔΡΙΤΙ	ΩΠΙΣΗΣ Ι	ΚΑΤΟΛ	ΙΣΘΗΣΗΣ ΕΙ	Π. ΟΔΟ	Y AF. F	ΕΩΡΓΙ	ΙΟΣ -	EPF(CLIE	ΟΔΟΤΗΣ ΝΤ	Σ:					ΣΙΓΜΑ	ΜΕΛΕΤ	ΏN A.E.					ΣΕΛΙΔΑ PAGE	.: B-3
ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	EKΘEΣΗ ΔΟΚΙΜΗΣ ΠΡΟ ΠΕΡΙΕΧΟΜΕΝΗΣ Υ (DETERMINATION OF WA ASTM D 2216	ΟΣΔΙΟΡΙΣΜΟΥ ΥΓΡΑΣΙΑΣ TER CONTENT) 5 - 10	Αρ	Δοκιμές / Tests . Πιστ. / Cert. No: 721																														
--	---	---	-------	--																														
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔ	ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	: 5	98 / 1024 / 1384																														
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ	I AE	ΓΕΩΤΡΗΣΗ / BORING No.	1	Г1																														
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLI	ING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	:	Δ1																														
HMEP. EKTEΛΕΣΗΣ / DATE OF TESTING:	19-20/7/2017	BAΘOΣ / DEPTH (m)	:	1.60-2.00																														
ЕКТЕЛЕΣΘΗКЕ АПО / ТЕSTED ВУ: В. Βάκρα	ου	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY:	Α. Σπυρόπουλο																														
Н ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SA	MPLING BY: EPFATHPIO / LAB	× REAATH / CUSTOM	ER																															
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Καστανά αργιλ	ώδη χαλίκια με άμμο																																	

Μέθοδος / Method	ХАВ		
Αριθμός κάψας / Container No.		1520	296
Βάρος υγρού δείγματος + κάψας Mass moist specimen + container	M _{cms}	gr	460.36
Βάρος ξηρού δείγματος + κάψας Mass dry specimen + container	M _{cds}	gr	429.78
Βάρος κάψας / Mass of container	Mc	gr	160.92
Βάρος ὑδατος / Mass of water	M _w	gr	30.58
Βάρος ξηρού δείγματος Mass of oven dry specimen	Ms	gr	268.86
Περιεχόμενη υγρασία Water content	$w = (M_w/M_s) \times 100$	%	11

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

		OPIO Liquid I	YAAPOT imit Deterr	HTAΣ nination	OPIO I Plastic I	IΛΑΣΤΙΚΟ Limit Deterr	THTAΣ nination
Αριθμός κάψας / Container No.	-	321	395	332	353	409	
Αριθμός κτύπων / No. of blows N	1	32	27	21	Superior	E-NEX22	AND STATES
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container 🦳 M ₁	gr	28.17	28.12	51.33	52.19	26.73	24/22/
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container M2	gr	26.19	26.21	49.29	51.10	25.87	1122/11/55
Βάρος κάψας / Mass of container M ₃	gr	19.14	19.63	42.46	43.57	19.72	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂ -M ₃))x100	%	28.09	29.03	29.87	14.48	13.98	

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Τηλ.: 2610438495,	Φαξ: 2610438355		ASTA D 004	14			Ар. Піσт. / Cert. No: 721
ЕРГО / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔ	ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓ ΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ -	ΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΠΑΝΔΡΙΤΙ	KΩΔ. LABO	ΕΡΓΑΣΤΗΡΙΟΥ RATORY No.		598 / 1025 / 1387
ΕΡΓΟΔΟΤΗΣ / CLIENT	ΣΙΓΜΑ ΜΕΛΕΤΩΝ	AE		ΓΕΩΤΙ	PHΣH / BORING No.		Γ1
НМЕР. ΔΕΙΓΜΑΤΟΛΗΨ	ΊΑΣ / DATE OF SAMPLI	NG: 14/7/2017		ΔΕΙΓΝ	1A / SAMPLE No.	:	Δ2
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ / Γ	ATE OF TESTING:	20-22/7/2017	23 3 3 2 4 5	BAOO	Σ / DEPTH (m)		3.00-3.40
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	те зтер ву: В. Вакр	DU .		EAED	ӨНКЕ АПО / СНЕСКЕ	ED	ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Ε	ΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SA	MPLING BY:	ΕΡΓΑΣΤΗΡΙΟ / LAB	x	ΠΕΛΑΤΗ / CUSTOM	IER	
ПЕРІГРАФН / DESCRI	ΡΤΙΟΝ: Καστανή άργιλ	ος με άμμο					

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	× А В		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			640
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	M _p	gr	97.33
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.84
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.6
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	P _{w,1}	gr/ml	0.99808
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t}=M_p+(V_pp_{w,t})$	gr	346.69
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	36.71
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκιμ Mass of pycnometer+water+soil solids at the test temperature	ιής Μ _{pws,t}	gr	369.79
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	G _t =M _s /(M _{pw,t} -(M _{pws,t} -M _s))		2.70
Συντελεστής θερμοκρασίας Temperature coefficient	К		0.99987
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.70

Παρατηρήσεις / Remarks:

∆-06-EN-31

Ο Ελέγξας Checked by In

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Δοκιμές / Tests

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

	ATTERE	BERG	WATER CONTENT	ΦΑΙΝΟΜΕΝΟ BAPOΣ WET DENSITY	EAPO ΦΑΙΝΟΜΕΙΝΟ BAPOΣ DRY DENSITY	ΕΙΔΙΚΟ ΒΑΡΟΣ SPEC. GRAVITY	ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ORGANIC MATTER	KATATAEH
LL %	PL %	PI %	w %	γ kN/m ³	Y₀ kN/m³	Gs	%	AUSCS
53	18	35	17.8			2.70		СН
Περιγρα Descriptio	φή άμμου on of sand) particles	: Υπογων	νιώδεις, μέτρια σ	κληροί κόκκοι			Ο Ελέγξας Checked by
Περιγρα Descriptio Παρατη	φή χαλικι on of grave ηρήσεις /	ών <u>I particles</u> Remark	: : s :					In

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

			OPIO Liquid L	YAAPOT	HTAΣ nination	OPIO F Plastic	IΛΑΣΤΙΚΟ Limit Detern	THTAΣ nination
Αριθμός κάψας / Container No.			457	305	428	348	363	
Αριθμός κτύπων / No. of blows N			28	23	17	14400		
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	28.72	51.08	36.07	50.17	26.47	1919 N
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	25.65	48.19	33.06	49.00	25.37	
Βάρος κάψος / Mass of container	M ₃	gr	19.74	42.79	27.62	42.36	19.28	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂ -	-M ₃))x100	%	51.95	53.52	55.33	17.62	18.06	

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Σελίδα 1 από 1

∆-06-EN-35

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
ץ (kN/m ³)	Ya (kN/m³)	Gs	S (%)	q _u (kPa)	ε (%)
20.71	17.73	2.70	92.4	274	15.0

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-41

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Ο Ελέγξας Checked by

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ

ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ (ONE-DIMENTIONAL CONSOLIDATION TEST) ASTM D 2435 - 11

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΙ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1025 / 1391
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. :	Г1
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. :	Δ2
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 19-27/7/2017	BAΘOΣ / DEPTH (m) :	3.00-3.40
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ЕЛЕГХӨНКЕ АПО / СНЕСКЕД	ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ /	/ LAB 🗙 ΠΕΛΑΤΗ / CUSTOMER	
		N. S. A. P. C. S. C. S.

ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Καστανή άργιλος με άμμο

Kαταταξη U.S.C.S. (Group Symbol):	a salaha	СН	all starting	
Γενικά στοιχεία δοκιμίου / Specimen info	11111	1.12	1311-212	Περιε
Αριθμός συσκευής / Odometer No.		12314	12	Αριθι
Βάρος δακτυλίου / Ring mass	and the se	gr	125.85	M _{uyp+}
Ύψος δοκιμίου / Specimen height		cm	2.00	M _{ξηρ+}
Διάμετρος δοκιμίου / Specimen diameter		cm	6.35	Μκάψα
Βάρος δοκιμίου+δακτυλίου / Mass of specime	en+ring	gr	256.52	w=((N
Κατάσταση δοκιμίου / Soil condition			Αρχικό Initial	Τελικό Final
Περιεχόμενη υγρασία / Water content	w	%	-18.7	19.5
Βάρος δοκιμίου / Moist mass of specimen		gr	130.67	131.57
Ξηρό Βάρος / Dry mass of specimen		gr	110.06	110.06
Επιφάνεια δοκιμίου / Specimen area		cm ²	31.67	
Όγκος δοκιμίου / Specimen volume		cm ³	63.34	11:07:2211
Ειδικό Βάρος κόκκων / Specific gravity	G		2.698	2.698
Ξηρό φαινόμενο βάρος / Dry unit weight	Yd	kN/m ³	17.03	17.60
Λόγος κενών / Void ratio	e	11.882 (I	0.553	0.503
Βαθμός κορεσμού / Degree of saturation	S	%	91.42	104.92
Ύψος στερεών / Equivalent height of solids	Hs	cm	1.288	1212-122

Περιε	χόμενη υγρασία / Water co	ontent					
Αριθμ	ιός κάψας / Container No.		470	353	430		
M _{uyp+i}	καψας/wet+con M ₁	gr	118.38	124.48	120.79		
M _{ξηp+}	κάψας / Dry+con M ₂	gr	106.37	111.75	106.21		
Μκάψα	ç / Container M ₃	gr	43.12	43.57	27.30		
w=((N	M1-M2)/(M2-M3))x100	%	19.0	19.0 18.7 18.5			
ελικό Final	Μέση υγρασία Average water content	%		18.7			

Συνθήκες Δοκιμής: Το δείγμα έχει τη φυσική του υγρασία και για τη δοκιμή χρησιμοποιείται απιονισμένο νερό

Μέθοδος Δοκιμής / Method of testing:

в

x

Είδος δοκιμίου (Type of specimen)

Αδιατάρακτο / Intact

x Αναζυμωμένο / Remolded

Προετοιμασία δοκιμίου: Το δοκίμιο φτιάχνεται στο δακτύλιο του κελιού με τη βοήθεια χορδής και μαχαιριού. Στη συνέχεια τοποθετείται στο κελί

TASH Load Increment	ΔН	Αρχικό ύψος δοκιμίου Η Specimen height	Λόγος κενών Void ratio	Αξονική παραμόρφωση Axial strain	Δe	Δр	Es	t ₅₀	Cv
kPa	cm	(cm)	е	ε (%)			MPa	min	10 ⁻⁴ cm ² /sec
0	0.0000	2.000	0.553	0	Second Second	REAL ST		ANA ANTIN'	Tall Rolling
25				A SCHERE SUL	2.3352	HE CAR			
50					Stille's	an a			
100	10.00			N.C. STREET					
150	0.0124	1.988	0.543	0.62	0.010	50	8.065		
199	0.0155	1.985	0.541	0.78	0.002	49	10.613	17	1.901
399	0.0470	1.953	0.516	2.35	0.024	200	12.698	37	0.846
802	0.0928	1.907	0.481	4.64	0.036	403	17.598	55	0.543
399	0.0802	1.920	0.490	4.01	2.2018	11.67	- 11: 11	We heat	1.11.12
150	0.0645	1.936	0.503	3.23	Τελικό Δ	ιαφορικό ί	ύψος δοκιμίοι	u (cm):	0.000

Final differential height

Τάση Διόγκωσης / Swell Pressure	σsp	kPa	$100 < \sigma_{sp} < 150$
Τάση Προφόρτισης / Preconsolidation Pressure	Pc	kPa	
Δείκτης Συμπιεστότητας / Compression Index	Cc		0.098

Δ-06-EN-40

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Σελίδα 2 από 2

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	CT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ ΙΑΒΟRATORY Νο.				
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. :	Г1			
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. :	Δ3			
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20-21/7/2017	BAΘOΣ / DEPTH (m) :	5.10-5.50			
εκτελεχθΗκε ΑΠΟ / TESTED BY: Β. Βάκρου	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο				
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	X REAATH / CUSTOMER	2			
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Πρασινότεφρη ιλυώδης, αργιλώδης άμμος					

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	x A B		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			634
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	Mp	gr	97.40
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.78
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.6
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	ρ _{w,t}	gr/ml	0.99808
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t}=M_p+(V_pp_{w,t})$	gr	346.70
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	37.01
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκι Mass of pycnomeler+water+soil solids at the test temperature	μής Μ _{pws,t}	gr	369.76
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$G_t = M_s / (M_{pw,t} - (M_{pws,t} - M_s))$		2.65
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99987
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.65

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-ΕΝ-31 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

*Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα	ΕΚΘΕΣΗ ΔΟΚΙΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ (DETERMINATION OF LIQUID LIMIT, PLA INDEX OF SOIL	Δοκιμές / Tests	
Τηλ.: 2610438495, Φαξ: 2610438355	ASTM D 4318 -	Ар. Піσт. / Cert. No: 721	
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	Α & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1026 / 1394
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤ	ΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. :	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	Δ3
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	20-21/7/2017	BAΘOΣ / DEPTH (m) :	5.10-5.50
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βά	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλο	
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	SAMPLING BY: EPFAETHPIO / LAB	x REAATH / CUSTOME	R
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Πρασινότεφ	ρη ιλυώδης, αργιλώδης άμμος		

		No. 1	OPIO Liquid L	YAAPOT	HTAΣ nination	OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination		
Αριθμός κάψας / Container No.			372	338	359	347	413	1022
Αριθμός κτύπων / No. of blows N			33	25	19	A CHARGE		California -
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	37.03	53.49	29.19	52.39	26.16	10831
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	35.35	51.48	27.25	51.36	25.16	362316
Βάρος κάψας / Mass of container	M ₃	gr	27.44	42.66	19.16	45.23	19.28	1.23
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂	₂ -M ₃))x100	%	21.24	22.79	23.98	16.80	17.01	1000

Διερχόμενο ποσοστό από το κόσκινο Νο 4 : 100 % Percent of soil particles passing No 4

Όριο υδαρότητας / Liquid limit	LL	23
Όριο πλαστικότητας / Plastic limit	PL	17
Δείκτης πλαστικότητας / Plasticity index	PI	6

Αεροξηραμένο

Air-dried

Ξηρό

Ο Ελέγξας Checked by

Oven-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40): Με κοσκίνιση

Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Εξοπλισμός: Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ ∆-06-EN-35

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Yypó Wet

X

Σελίδα 1 από 1

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

ΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No.				
ΓΕΩΤΡΗΣΗ / BORING No. :	Г1			
ΔΕΙΓΜΑ / SAMPLE No. :	Δ4			
BAΘOΣ / DEPTH (m) :	7.00-7.30			
ЕЛЕГХӨНКЕ АПО / СНЕСКЕД	ΒΥ: Α. Σπυρόπουλο			
× REAATH / CUSTOMER	S N 18 1 1 2 2			
	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ : LABORATORY No. : ΓΕΩΤΡΗΣΗ / BORING No. : ΔΕΙΓΜΑ / SAMPLE No. : ΒΑΘΟΣ / DEPTH (m) : ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED ×			

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %			
Χρησιμοποιούμενη Μέθοδος / Method used:	× A B	S		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			281	
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	Mp	gr	86.80	
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.91	
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.2	
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	P _{w,t}	gr/ml	0.99816	
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t} = M_p + (V_pp_{w,t})$	gr	336.25	
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	36.68	
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκι Mass of pycnometer+water+soil solids at the test temperature	μής Μ _{ρws,ι}	gr	359.14	
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$\mathbf{G}_{l} {=} \mathbf{M}_{s} / (\mathbf{M}_{pw, l}{-} (\mathbf{M}_{pws, l}{-} \mathbf{M}_{s}))$	_t =M _s /(M _{pw,t} -(M _{pws,t} -M _s))		
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99996	
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.66	

Παρατηρήσεις / Remarks:

O Ελέγξας Checked/by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΕΔΑΦΩΝ ΜΗΧΑΝΙΚΗΣ (PARTICLE-SIZE ANALYSIS OF SOILS) Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα E105-86 / 7 Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Пют. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ EPFO / PROJECT: 598 / 1027 / 1397 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. **ΕΡΓΟΔΟΤΗΣ / CLIENT:** ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** : Γ1 ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 **ΔΕΙΓΜΑ / SAMPLE No.** Δ4 : 20-21/7/2017 7.00-7.30 HMEP. EKTEREZHZ / DATE OF TESTING: BAGOS / DEPTH (m) : ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / ΤΕSTED ΒΥ: Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB *ΠΕΛΑΤΗ / CUSTOMER* x ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ιλυώδης άμμος IL CONTRACTO

SIEVE	3"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	No4	No10	No40	No200
ANOIΓMA ΟΠΗΣ (mm) APERTURE SIZE	76.2	50.8	38.1	25.4	19.0	12.5	9.52	4.76	2.00	0.425	0.074
ΔIEPXOMENO PASSING (%)	Sec. 1							100.0	100.0	99.7	48.7

	AM	MOZ / SAND		ΧΑΛΙΚΕΣ	/ GRAVELS	_
CLAY & SILT	AENTH FINE	MEXH MEDIUM		AENTOI FINE		VIBO
48.7	51		-	-	•	

ΔΟΚΙΜΕΣ ΚΑΤΑΤΑΞΗΣ / CLASSIFICATION TESTS

OPIA ATTE	ATTERE	BERG IMITS	YΓΡΑΣΙΑ WATER CONTENT	ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ WET DENSITY	EHPO ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ DRY DENSITY	EΙΔΙΚΟ BAPOΣ SPEC. GRAVITY	ΠΟΣΟΣΤΟ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ORGANIC MATTER	KATATAEH
LL %	PL %	PI %	w %	γ kN/m ³	Y₀ kN/m³	Gs	%	AUSCS
NP	NP	NP	13.4			2.66		SM
Περιγρα Descriptic	φή άμμου on of sand	particles	: Υπογων	νιώδεις, σκληροί	κόκκοι			Ο Ελέγξας,
Περιγρα Descriptic Παρατη	φή χαλικι o <u>n of orave</u> ρήσεις /	ών <u>I oarticles</u> Remark:	: s :					Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Δ-06-EN-37

🚺 ΓΕΩΔΟΜΗ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No.	:	598 / 1028 / 1400
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ ΓΕΩΤΡΗΣΗ / BORING NO). :	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 ΔΕΙΓΜΑ / SAMPLE No.	1	Δ5
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20-22/7/2017 ΒΑΘΟΣ / DEPTH (m)	:	9.00-9.30
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHEC	KED	ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB X ΠΕΛΑΤΗ / CUST	OMER	
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος	13	

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	× A B		A States
Αριθμός ογκομερικής φιάλης / Pycnometer No.			277
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	M _p	gr	96.84
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	V _p	ml	249.73
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.6
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	Pw,t	gr/ml	0.99808
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t} = M_{p} + (V_{p}p_{w,t})$	gr	346.09
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	36.43
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκιμ Mass of pycnometer+water+soil solids at the test temperature	ιής Μ _{ρws,t}	gr	369.04
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$G_t = M_{\text{b}}/(M_{\text{pw,t}}-(M_{\text{pws,t}}-M_{\text{s}}))$		2.70
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99987
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20⁰C} =KG _t		2.70

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΟΡΙΑ ΑΤΤΕ	ATTERE	ERG MITS	YΓΡΑΣΙΑ WATER CONTENT	ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ WET DENSITY	EHPO ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ DRY DENSITY	EΙΔΙΚΟ BAΡΟΣ SPEC. GRAVITY	ΠΟΣΟΣΤΟ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ORGANIC MATTER	KATATAEH
LL %	PL %	PI %	w %	γ kN/m ³	Ya kN/m³	Gs	%	AUSCS
51	17	34	15.3			2.70		СН
Περιγρα Descriptic	φή άμμου on of sand	particles						Ο Ελέγξας Checked by
Περιγρα Descriptic Παρατη	φή χαλικι on of grave ρήσεις /	ών <u>Loarticles</u> Remark	: : s:					In

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ (DETERMINATION OF LIQUID LIMIT, PLA INDEX OF SOIL ASTM D 4318	Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 72	
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	Α & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ : LABORATORY No. :	598 / 1028 / 1402
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩ	ΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. :	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. :	Δ5
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	19-20/7/2017	BAΘOΣ / DEPTH (m) :	9.00-9.30
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βά	κρου	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	ΒΥ: Α. Σπυρόπουλο
Н ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	SAMPLING BY: EPFAΣTHPIO / LAB	x REAATH / CUSTOMER	1
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλ	ος		

		STA .	OPIO YΔAPOTHTAΣ Liquid Limit Determination			OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination		
Αριθμός κάψας / Container No.	ACCESSE!	12	386	395	361	341	411	1. 1.
Αριθμός κτύπων / No. of blows N		12	34	27	22	The second		
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	33.97	26.51	49.04	49.87	26.37	1.10
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	31.64	24.21	46.61	48.84	25.42	2. 92 -
Βάρος κάψας / Mass of container	M3 🗧	gr	26.86	19.63	41.90	42.81	19.80	States &
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂	-M ₃))x100	%	48.74	50.22	51.59	17.08	16.90	

Διερχόμενο ποσοστό από το κόσκινο Νο 4 : 100 % Percent of soil particles passing No 4

Όριο υδαρότητας / Liquid limit	LL	51
Όριο πλαστικότητας / Plastic limit	PL	17
Δείκτης πλαστικότητας / Plasticity index	PI	34

Αεροξηραμένο

Air-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Ο Ελέγξας Checked by

Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40):

Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Εξοπλισμός: Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-35

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Σελίδα 1 από 1

(Wet Unit Weight)	(Dry Unit Weight)	(Specific gravity)	(Degree of Saturation)	(Unconfined compressive strength)	(Strain at failure)
Y	Yd	Gs	S	qu	ε
(kN/m ³)	(kN/m ³)		(%)	(kPa)	(%)
21.59	18.75	2.70	99.3	726	8.1

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-ΕΝ-41 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετόστηκε στο εργαστήριο
ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Ο Ελέγξας Checked by

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ (ONE-DIMENTIONAL CONSOLIDATION TEST) ASTM D 2435 - 11

ESYD
Δοκιμές / Tests
р. Піσт. / Cert. No: 721

and the second			FILMING STATISTICS	
ЕРГО / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑ	ΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ ΠΑΝΔΡΙΤΙ LABO	. ΕΡΓΑΣΤΗΡΙΟΥ DRATORY No.	: 598 / 1028 / 14
ΕΡΓΟΔΟΤΗΣ / CLIENT	Γ: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩ	ΓΡΗΣΗ / BORING No.	; Г1
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017			MA / SAMPLE No.	: Δ5
НМЕР. ЕКТЕЛЕΣНΣ /	DATE OF TESTING: 19-27/7/2017	ВАӨ	OΣ / DEPTH (m)	: 9.00-9.30
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	ΤΕSTED BY: Α. Σπυρόπουλο	EVE	ХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλ
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Ε	ΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY:	ΕΡΓΑΣΤΗΡΙΟ / LAB 🗙	TEAATH / CUSTOME	ER
			CHANGE AND	Sector States

ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή άργιλος

r 11000 10

Katatagn U.S.C.S. (Group Symbol):		10 2 163	LH	
Γενικά στοιχεία δοκιμίου / Specimen info		1.343	12.72	Περιε
Αριθμός συσκευής / Odometer No.			16	Αριθι
Βάρος δακτυλίου / Ring mass		gr	126.07	Muypt
Ύψος δοκιμίου / Specimen height		cm	2.00	M _{ξηρ+}
Διάμετρος δοκιμίου / Specimen diameter		cm	6.35	Μκάψα
Βάρος δοκιμίου+δακτυλίου / Mass of specim	en+ring	gr	262.93	w=((I
Κατάσταση δοκιμίου / Soil condition			Αρχικό Initial	Τελικό Final
Περιεχόμενη υγρασία / Water content	w	%	15.2	15.8
Βάρος δοκιμίου / Moist mass of specimen	11 1 1 1 1	gr	136.86	137.56
Ξηρό Βάρος / Dry mass of specimen		gr	118.79	118.79
Επιφάνεια δοκιμίου / Specimen area		cm ²	31.67	
Όγκος δοκιμίου / Specimen volume		cm ³	63.34	
Ειδικό Βάρος κόκκων / Specific gravity	G,	5	2.702	2.702
Ξηρό φαινόμενο βάρος / Dry unit weight	Yd	kN/m ³	18.38	18.99
Λόγος κενών / Void ratio	e		0.441	0.394
Βαθμός κορεσμού / Degree of saturation	S	%	93.24	108.27
Ύψος στερεών / Equivalent height of solids	H _s	cm	1.388	

Περιε	χόμενη υγρασία / Water	г сог	ntent			
Αριθμ	ιός κάψας / Container No	o.		338	390	371
M _{uyp+}	καψας / wet+con	A1	gr	103.95	120.11	116.47
M _{ξηp+i}	κάψας / Dry+con N	A2	gr	95.8	107.59	103.81
Μ _{κάψα}	c / Container	A3	gr	42.66	27.44	19.42
w=((N	M1-M2)/(M2-M3))x100	21	%	15.3	15.6	15.0
:λικό inal	Μέση υγρασία Average water content	11	%	15.3		

Συνθήκες Δοκιμής: Το δείγμα έχει τη φυσική του υγρασία και για τη δοκιμή χρησιμοποιείται απιονισμένο νερό

Μέθοδος Δοκιμής / Method of testing:

в Δ

x

Είδος δοκιμίου (Type of specimen) Αδιατάρακτο / Intact Αναζυμωμένο / Remolded

Προετοιμασία δοκιμίου: Το δοκίμιο φτιάχνεται στο δακτύλιο του κελιού με τη βοήθεια χορδής και μαχαιριού. Στη συνέχεια τοποθετείται στο κελί

TAΣH Load Increment	ΔН	Αρχικό ύψος δοκιμίου Η Specimen height	Λόγος κενών Void ratio	Αξονική παραμόρφωση Axial strain	Δe	Δp	Es	t ₅₀	Cv
kPa	cm	(cm)	е	ε (%)			MPa	min	10 ⁻⁴ cm ² /sec
0	0.0000	2.000	0.441	0	学校	1415-01	11-11111-911	111115	
25					102	ににこう	121:11:24:		
50						10000	151211512		
100					124	11228	1131111510		
150	0.0118	1.988	0.432	0.59	0.009	50	8.475	Mart	Second Second
195	0.0135	1.987	0.431	0.68	0.001	45	11.547	10	3.239
399	0.0434	1.957	0.410	2.17	0.022	204	13.645	12	2.619
798	0.0829	1.917	0.381	4.15	0.028	399	20.203	20	1.508
399	0.0756	1.924	0.386	3.78	2.41.2	light -	10101		
150	0.0645	1.936	0.394	3.23	Τελικό Δ	αφορικό ι	ύψος δοκιμίο	u (cm):	0.000

Final differential height

Τάση Διόγκωσης / Swell Pressure	σsp	kPa	$100 < \sigma_{sp} < 150$
Τάση Προφόρτισης / Preconsolidation Pressure	Pc	kPa	
Δείκτης Συμπιεστότητας / Compression Index	Cc	1.1	0.081

🚺 ΓΕΩΔΟΜΗ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

EKΘEΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (DETERMINATION OF THE POINT LOAD STRENGTH INDEX) ASTM D 5731-16

ESYD
Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

EPFO / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ	ΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠ Γ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΙΣΗΣ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ 598 / 10 LABORATORY No. 598 / 10	029 / 1405
ΕΡΓΟΔΟΤΗΣ / CLIEN	Γ: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΙ			ΓΕΩΤΡΗΣΗ / BORING No.:	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗ	ΨΙΑΣ / DATE OF SAMPLING:	14/7/2017		ΔΕΙΓΜΑ / SAMPLE No. :	Π1
ΗΜΕΡ/ΝΙΑ ΕΚΤΕΛΕΣΗ	IΣ / DATE OF TESTING:	19/7/2017		BAΘOΣ / DEPTH (m) : 1	10.15-10.30
ЕКТЕЛЕΣТНКЕ АПО /	ΤΕSTED BY: Β. Βάκρ	ou		ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σι	ολυοηόμο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Ε	КТЕЛЕΣΘΗКЕ АПО / SAMPLI	ΝG ΒΥ: ΕΡΓΑΣΤΗΡΙΟ / LAB	x	TIEAATH / CUSTOMER	(A) 1. 花公

Λιθολογική περιγραφή Lithologic description:	Τεφρή Μάργ	a							ÏX		
Συνθήκες υγρασίας δείγματος Moisture condition of the specimen:	Όπως παραλ	λήφθηκε							<u>ZA</u>		
Τύπος δοκιμής - Τύπος θραύσης Test type - type of failure:	Διαμετρική -	Η θραύσι	ι είναι έ γ	үкирп			197	1000	ZA.	Alla Allassis	
Αριθμός Δοκιμίου / Specimen Number:		1	2	3	4	5	6	7	8	9	10
Απόσταση σημείου δοκιμής - ελάχιστου ελεύθερου άκρου / Distance between contact points and nearest free face	L (mm)	73.03									
Διάμετρος / Diameter	D (mm)	71.0							- ZAX		
	L/D	1.03		13:23			NIE:				
Φορτίο θραύσης / Failure load	P (N)	615	11:224			N.S.		200	200		
Δείκτης Σημειακής Φόρτισης Uncorrected Point Load strength index	I _s (MPa)	0.12				1110		23.02 23.02			
Διορθωμένη τιμή δείκτη Σημειακής Φόρτισης Corrected Point Load strength index	I _{s(50)} (MPa)	0.14									
Συντελεστής ανισοτροπίας Point Load strength anisotropy index	Ι _α							1000			
Ισοδύναμη αντοχή σε μονοαξονική θλίψη Estimated uniaxial compressive strength	σ _c (MPa)	3.2					1000	6000 5000			
Μέση τιμή I _{s(50)} (MPa) Mean Value	0.14	Χαρακτηρισμός με βάση την ισοδύναμη αντοχή σε μοναξονική θλίψη (ISRM 1978) UCS Strength classification						978)			
Μέση τιμή σ _c (MPa) Mean Value	3.2	Πολύ χαμηλής αντοχής / Very low strength									

RMR Intact rock material rating:	1	(Beniawski 1989)
----------------------------------	---	------------------

Χρησιμοποιούμενος Εξοπλισμός: Test apparatus used Συσκευή σημειακής φόρτισης Impact AG187με Αριθμ. Πιστοπ. Διακρίβωσης 22SK161118NC
Ψηφιακό παχύμετρο 300mm, MITUTOYO CD-12"PS με Αριθμ. Πιστοπ. Διακρίβωσης 10MC161114NA

Παρατηρήσεις / Remarks:

Η δοκιμή εκτελέστηκε σε λιγότερα από 10 δοκίμια λόγω έλλειψης υλικού

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Δ-06-EN-47

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο
ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΓΕΩΔΟΓ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΙ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26 Τηλ.: 2610438495, Φαξ: 26 ⁻¹	ΝΙΚΗΣ 443, Πάτρα 10438355	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ Π ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑ RMINATION OF THE POIN ASTM D 57	ΡΟΣΔΙΟΡΙΣ AKHΣ ΦΟΡΤΙ T LOAD STRE '31-16	MOY ΣΗΣ NGTH INDEX)	ΔΙΑΓ ΕF ΔΟΚ ESYD TEST	ΠΣΤΕΥΜΕΝΟ ΡΓΑΣΤΗΡΙΟ ΙΜΩΝ - ΈΣΥΔ ACCREDITED LABORATORY
ΓΕΩΤΡΗΣΗ / BORING No.:	Г1	ΔΕΙΓΜΑ / SAMPLE No.:	Π1	ΒΑΘΟΣ / DEPTH	(m) :	10.15-10.30
	окіµю 1 / Specimen 1		Δοκίμιο 6	/ Specimen 6		
Δ	sokiµıo 2 / Specimen 2		Δοκίμιο 7	/ Specimen 7		
	λοκίμιο 3 / Specimen 3		Δοκίμιο ε	3 / Specimen 8		
	Δοκίμιο 4 / Specimen 4		Δοκίμιο 9	9 / Specimen 9		
	Δοκίμιο 5 / Specimen 5		Δοκίμιο 14	0 / Specimen 10		
				Ο ελέγξα Chegked	ıç by	

Το Εργαστήριο τελεί υπο την εποπτεια της ΓΙ ΔΕ/ΚΙ Δ-06-ΕΝ-47

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

EKΘEΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (DETERMINATION OF THE POINT LOAD STRENGTH INDEX) ASTM D 5731-16

Ар. Пют. / Сегт. No: 721

EPFO / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ	ΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ Σ - ΚΑΠΑΝΔΡΙΤΙ	KΩΔ. EP LABORA	ΥΓΑΣΤΗΡΙΟΥ ATORY No.	598 / 1030	/ 1406
ΕΡΓΟΔΟΤΗΣ / CLIENT	ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ		ΓΕΩΤΡΗ	EH / BORING No.:	ezan ma	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨ	IAΣ / DATE OF SAMPLING: 14/7	/2017	ΔΕΙΓΜΑ	/ SAMPLE No. :	320///////12	П2
ΗΜΕΡ/ΝΙΑ ΕΚΤΕΛΕΣΗ	E / DATE OF TESTING: 19/7	/2017	ΒΑΘΟΣ	/ DEPTH (m) :	12.0	0-12.40
ΕΚΤΕΛΕΣΤΗΚΕ ΑΠΟ / '	ΓΕSTED ΒΥ: Β. Βάκρου		ΕΛΕΓΧΘ	НКЕ АПО / СНЕСКІ	ED BY: Α. Σπυρα	ονυο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Ε	CTEΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY:	εργαστηρίο / Lab		TEAATH / CUSTC	OMER	

Λιθολογική περιγραφή Lithologic description:	Τεφρή Μάργ	α									
Συνθήκες υγρασίας δείγματος Moisture condition of the specimen:	Όπως παραλ	λήφθηκε									
Τύπος δοκιμής - Τύπος θραύσης Test type - type of failure:	Διαμετρική -	Η θραύση	ι είναι έ γ	кирл							
Αριθμός Δοκιμίου / Specimen Number:		1	2	3	4	5	6	7	8	9	10
Απόσταση σημείου δοκιμής - ελάχιστου ελεύθερου άκρου / Distance between contact points and nearest free face	L (mm)	160.73					and a				
Διάμετρος / Diameter	D (mm)	71.5							EEN.		
	L/D	2.25									
Φορτίο θραύσης / Failure load	P (N)	500		S					E S		
Δείκτης Σημειακής Φόρτισης Uncorrected Point Load strength index	I _s (MPa)	0.10					1111				
Διορθωμένη τιμή δείκτη Σημειακής Φόρτισης Corrected Point Load strength index	I _{s(50)} (MPa)	0.12					000				
Συντελεστής ανισοτροπίας Point Load strength anisotropy index	Ιa						100				
Ισοδύναμη αντοχή σε μονοαξονική θλίψη Estimated uniaxial compressive strength	σ _c (MPa)	2.7									
Μέση τιμή I _{s(50)} (MPa) Mean Value	0.12	Xc	зракт ղ ріσ	μός με βάσ υ(η την ισοδί CS Strength	ύναμη αντο classificat	χή σε μονα ion	ξονική θλίι	μη	(ISRM 19	978)
Μέση τιμή σ _c (MPa) Mean Value	2.7			Πολ	ύ χαμηλι	ής αντο χ	ής / Very	low str	ength		

RMR Intact rock material rating:	(Beniawski 1989)
----------------------------------	------------------

Χρησιμοποιούμενος Εξοπλισμός: Test apparatus used Συσκευή σημειακής φόρτισης Impact AG187με Αριθμ. Πιστοπ. Διακρίβωσης 22SK161118NC
Ψηφιακό παχύμετρο 300mm, MITUTOYO CD-12"PS με Αριθμ. Πιστοπ. Διακρίβωσης 10MC161114NA

Παρατηρήσεις / Remarks:

Η δοκιμή εκτελέστηκε σε λιγότερα από 10 δοκίμια λόγω έλλειψης υλικού

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΗ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. Τηλ.: 2610438495, Φαξ:	ΟΜΗ ΕΧΝΙΚΗΣ Σ 26443, Πάτρα 2610438355	(DETER	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΙ MINATION OF THE PO ASTM D	Ξ ΠΡΟΣΔΙΟΡΙΣ ΕΙΑΚΗΣ ΦΟΡΤ)INT LOAD STR 5731-16	ΣΜΟΥ ΓΙΣΗΣ ENGTH INDEX)	ΔΙΑΠΙΣΤΕΥΙ ΕΡΓΑΣΤΗ ΔΟΚΙΜΩΝ - X) ESYD ACCRE TEST LABOR		
ΓΕΩΤΡΗΣΗ / BORING No.:		Г1	ΔΕΙΓΜΑ / SAMPLE No.:	П2	ΒΑΘΟΣ / DEPTH	(m) :	12.00-12.40	
	<u> </u>	ecimen 1		Δοκίμιο	6 / Specimen 6			
	Δοκίμιο 2 / Sp	ecimen 2		Δοκίμιο	7 / Specimen 7			
	Δοκίμιο 3 / Sn	ecimen 3		Δοκίμιο	8 / Specimen 8			
				Lonpid				
	Докіµю 4 / Sp	ecimen 4		Δοκίμιο	9 / Specimen 9			
	E							
	Δοκίμιο 5 / Sr	pecimen 5		Δοκίμιο 1	10 / Specimen 10			
					0 0 646	10		
					Checked	by		
					M			
Το Εργαστήριο τελεί υπό το	ν εποπτεία τος Γ	TAE/KEAE	• To\/		courting Belines			

∆-06-EN-47

Σελίδα 1 από 1

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΓΕΩΔΟΜΗ ΓΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑΡΟΤΗΤΑΣ, ΟΡΙΟΥ ΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΜΗΧΑΝΙΚΗΣ (DETERMINATION OF LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY 38495, Φαξ: 2610438355 INDEX OF SOILS) ASTM D 4318 - 10 Α				
EPFO / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝ/ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	Α & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1031 / 1408		
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤ	ΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No.	Г1		
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	Δ6		
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	21-22/7/2017	BAΘOΣ / DEPTH (m) :	15.50-16.00		
ЕКТЕЛЕΣӨНКЕ АПО / TESTED BY: В. Βά	κρου	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλο		
Н ДЕІГМАТОЛНΨІА ЕКТЕЛЕΣӨНКЕ АПО /	SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	× REAATH / CUSTOME	R		
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλ	λος με άμμο				

			OPIO Liquid l	YAAPOT	HTAΣ nination	OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination		
Αριθμός κάψας / Container No.			406	461	353	314	340	ing a state
Αριθμός κτύπων / No. of blows N			33	27	22			
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	35.11	26.71	50.46	50.77	34.43	13/8/2
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	33.30	24.98	48.79	49.52	33.34	San S
Βάρος κάψας / Mass of container	M ₃	gr	27.30	19.44	43.57	42.48	27.29	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂	-M ₃))x100	%	30.17	31.23	31.99	17.76	18.02	and and

Διερχόμενο ποσοστό από το κόσκινο Νο 4 : 100 % Percent of soil particles passing No 4

Όριο υδαρότητας / Liquid limit	LL	32
Όριο πλαστικότητας / Plastic limit	PL	18
Δείκτης πλαστικότητας / Plasticity index	PI	14

Αεροξηραμένο

Air-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation: Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40):

> Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

X Yypó Wet

Ξηρό Oven-dried

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-35

Εξοπλισμός:

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Σελίδα 1 από 1

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH) ASTM D2166 / D2166M-16

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ : 598 / 1031 / 1409 LABORATORY No. : 598 / 1031 / 1409					
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ1					
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : Δ6					
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20/7/2017	ΒΑΘΟΣ / DEPTH (m) : 15.50-16.00					
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο					
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	× NEAATH / CUSTOMER					
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος με ἀμμο	ΤΟΠΟΘΕΣΙΑ / LOCATION : ΚΑΠΑΝΔΡΙΤΙ					

Στοιχεία Δοκιμίο	ou / s	Specimen	info
Βάρος / Weight	В	gr	2293.41
Ύψος / Height	Н	- cm	19.11
Διάμετρος / Diameter	D	cm	8.44
Επιφάνεια / Area	A	cm ²	55.95
Оүкос / Volume	V	cm ³	1069.03
Ρυθμός παραμόρφωσης Average rate of strain		%/min	1.4
Κατάταξη U.S.C.S. (Group	sym	ibol)	CL

Ο Ελέγξας Checked by

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
Y	Yd	Gs	S	qu	E
(kN/m ³)	(kN/m ³)		(%)	(kPa)	(%)
21.02	18.20			435	6.5

Παρατηρήσεις / Remarks:

ЕРГА БРГА Пар. Дюй Тар. — 26	ΓΕΩΔΟΜΗ 2ΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Διοδώρου 160, Τ.Κ. 26443, Πάτρα 2610428495, σε: 2610428255										<u>ک</u> ور							
			ΩTEXNIKH	EPEYNA	& MEAET	ΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΛ. ΕΡΓΑΣΤΗΡΙΟΥ								Ap	598 /	1032 / 1410		
FPEOAOTH	5/0		ΤΟΛΙΣΘΗΣ ΣΙΓΜΑ		DAOY AF	ΓΕΩΡΓΙΟ	<u>Σ - ΚΑΠΑ</u>	ΝΔΡΙΤ	1				BORATOR	RY No.	G No		1 00	Г1 Г1
	MAT			SAMP		14/7/2	017											Λ7
HMEP. EKT	ΕΛΕΣΙ		OF TESTI	NG:	21-22/	7/2017	017					BA	θΟΣ / DE	PTH (m	10.		16	5,70-17,00
ΕΚΤΕΛΕΣΘΗ	IKE A	TIO / TES	TED BY:	B. Bàk	00U	.,		100			-	EAL	ЕГХӨНКЕ		CHECKE	D BY	A. 1	Σπυρόπουλο
Η ΔΕΙΓΜΑΤ	олнч	PIA EKTE	ΛΕΣΘΗΚΕ	AПО / S	AMPLIN	G BY:		ΕΡΓΑΣ	THPI	O / LAB		x		EAATH /	CUSTOM	ER		
ΠΕΡΙΓΡΑΦΙ	H / DE	SCRIPTI	ΟΝ: Τεφρ	η άργιλα	ος με άμμ	D												
	ΚΟΣΚ	INO		ווצ	2"	1 1/2"	1"	3/4		1/2"	3/	Q"	No4	No10	No40	No2		
	SIEV	<u>е</u> Гма опна	Σ (mm)	76.2	50.8	38.1	25.4	10 (12 5	- 10	52	4 76	2.00	0.425	0.07	74	
	APER AIEP	TURE SIZE		70.2	50.0	50.1	23.7	15.0	,	12.5	9	52	100.0	100.0	99.3	81	6	
	PASS	ING (%)											1.00.0					
			кокко	NETPIK		ΥΣΗ Ε	ΔΑΦΩΝ	/PA	RTIC	LE-SIZ	E	AN	ALYSIS	OF SOI	LS			
	10110			0 200		0 40			10		4		P 1	4	1/2"	112"		
100				ž		No.	EEE		-N		N		4 6 	м : 		N N	њ -	
					\checkmark												1	
80											0.212							
9	15			i												† i	i	
S D60				-													1	
AENS				1													1	
											10							
AIEF																11	1	
0 220																	1	
DI D						İ										1	i	
Ē					E			10.01										
0	001			ΔΙΑΜΙ 0.1	ΕΤΡΟΣ Κ	ΟΚΚΩΝ	/ DIAME	ETER C	OF S	OIL PAR	T	CLI	ES (mm) 10					
	1000			13.8		AMM	OΣ / SA	ND					XAAI	(EΣ / G	RAVEL	S	111	
	A	CLAY &	& IAYE SILT		ЛЕПТН FINE		ME	ΣH			NΔPH ΛΕΠΤΟΙ ΧΟ DARSE FINE C		XONAR	POI SE	VIDOI			
		81.€	6		18													
					ΙΕΣ ΚΑ	TATAE		LASS	SIFIC		11	TES	STS					
	ATTER	RBERG LIMITS	ΥΓΡΑΣΙΑ WATER CONTENT	ΦAIN B. WET	OMENO APOΣ DENSITY	EHPO C E DRY	ΦΑΙΝΟΜΙ 3ΑΡΟΣ DENSIT	ENO Y	E SPE	EIΔIKO BAPOΣ C. GRAVIT	(0		ΣΤΟ Ν ΟΥΣΙΩ MATTER	N K	ATAT	AEH	
LL %	PL %	PI %	w %	k	Y KN/m ³		Ya kN/m ³			Gs	1000	100.10	%			7030		
33	17	16	14.8									2000			ALL DA	CL		
Περιγραφ Description	ή άμμα of san	ou d particles	: Үпоүс	υνιώδεις	;, σκληροί	κόκκοι									0	Ελέγ	ζας	

Checked by

• Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ ∆-06-EN-104

:

Περιγραφή χαλικιών

Description of gravel particles: Παρατηρήσεις / Remarks :

Σελίδα 1 από 1

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑΡΟΤΗΤΑΣ, ΟΡΙΟΥ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ ΠΛΑΣΤΙΚΟΤΗΤΑΣ (DETERMINATION OF LIQUID LIMIT, PLASTIC LIMIT AND PLASTICIT INDEX OF SOILS) ASTM D 4318 - 10				Δοκιμές / Tests
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. Ο	& ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠ ΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΙΣΗΣ ΚΩΔ LAB	. ΕΡΓΑΣΤΗΡΙΟΥ ORATORY No.	: 598	8 / 103 <mark>2 / 141</mark> 1
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΙ	N AE	ΓΕΩ	ΤΡΗΣΗ / BORING No.	:	Г1
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMP	LING: 14/7/2017	ΔΕΙ	ΔΕΙΓΜΑ / SAMPLE No.		Δ7
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	21-22/7/2017	BAG	OΣ / DEPTH (m)		16.70-17.00
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρ	DOU	EAE	ГХӨНКЕ АПО / СНЕСКЕ	D BY:	Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / S	AMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / L	AB x	ΠΕΛΑΤΗ / CUSTOME	R	CONTRACT ST
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλο	ς με άμμο	A Call			

		60.00	OPIO Liquid L	Y∆APOT .imit Detern	HTAΣ nination	OPIO F Plastic	IΛΑΣΤΙΚΟΤ Limit Determ	THTAΣ ination
Αριθμός κάψας / Container No.		1895	396	378	418	363	351	No.
Αριθμός κτύπων / No. of blows N		1822	29	24	18		- Sum	
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	35.62	36.18	36.78	25.83	26.72	
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	33.61	33.92	34.47	24.87	25.70	
Βάρος κάψας / Mass of container	M ₃	gr	27.36	27.16	27.80	19.28	19.66	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂ -	M ₃))x100	%	32.16	33.43	34.63	17.17	16.89	1111

Διερχόμενο ποσοστό από το κόσκινο Νο 4 : 100 % Percent of soil particles passing No 4

Όριο υδαρότητας / Liquid limit	LL	33
Όριο πλαστικότητας / Plastic limit	PL	17
Δείκτης πλαστικότητας / Plasticity index	PI	16

Αεροξηραμένο

Air-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

X Yypó Wet Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40):

Ξηρό Oven-dried

Ο Ελέγξας Checked, by

Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Εξοπλισμός: Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-35

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ Σελίδα 1 από 1

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα

Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH) ASTM D2166 / D2166M-16

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No. : 598 / 1032 / 1412
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ1
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : Δ 7
HMEP. EKTEΛΕΣΗΣ / DATE OF TESTING: 20/7/2017	BAΘOΣ / DEPTH (m) : 16.70-17.00
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / L	AB x REAATH / CUSTOMER
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος με ἀμμο	ΤΟΠΟΘΕΣΙΑ / LOCATION : ΚΑΠΑΝΔΡΙΤΙ

Στοιχεία Δοκιμίο	u / s	Specimen	info
Bάρος / Weight	В	gr	2185.15
Ύψος / Height	Н	cm	18.24
Διάμετρος / Diameter	D	cm	8.43
Επιφάνεια / Area	Α	cm ²	55.83
Оүкос / Volume	V	cm ³	1018.13
Ρυθμός παραμόρφωσης Average rate of strain		%/min	1.4
Κατάταξη U.S.C.S. (Group	sym	nbol)	CL

Υγρασία / Water content Αριθμός κάψας / Can No. 334 $m_{u\gamma p} + m_{\kappa}$ 142.23 gr $m_{\xi} + m_{\kappa}$ 127.44 gr 27.21 m, gr 14.79 $m_{u\delta}$ gr 100.23 m gr $m_{u\delta} / m_{\xi} = w$ % 14.8

q_= kPa 489

> Ο Ελέγξας Checked by

> > Σελίδα 1 από 1

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
Y (kN/m ³)	Yd (kN/m³)	Gs	S (%)	q _u (kPa)	ε (%)
21.03	18.33			489	7.0

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ ∆-06-EN-41

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355		
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕ/ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ /	ΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	: 598 / 1033 / 1413
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ		ΓΕΩΤΡΗΣΗ / BORING No.	: Г2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING:	: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	: Δ1
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 19-	-20/7/2017	BAΘOΣ / DEPTH (m)	: 2.60-3.00
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου		ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPL	LING BY: EPFAΣTHPIO / LAB	x REAATH / CUSTOME	ER
ПЕРІГРАФН / DESCRIPTION: Каστανά αργιλώδη	η χαλίκι <mark>α</mark> με άμμο		

Μέθοδος / Method	X A B		
Αριθμός κάψας / Container No.			294
Βάρος υγρού δείγματος + κάψας Mass moist specimen + container	M _{cms}	gr	526.63
Βάρος ξηρού δείγματος + κάψας Mass dry specimen + container	M _{cds}	gr	509.68
Βάρος κάψας / Mass of container	Mc	gr	164.97
Βάρος ύδατος / Mass of water	M _w	gr	16.95
Βάρος ξηρού δείγματος Mass of oven dry specimen	M _s	gr	344.71
Περιεχόμενη υγρασία Water content	w = (M _w /M _s)x100	%	5

Παρατηρήσεις / Remarks:

Δ-06-EN-29

Ο Ελέγξας Checked by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΕΔΑΦΩΝ ΜΗΧΑΝΙΚΗΣ (PARTICLE-SIZE ANALYSIS OF SOILS) AOKIUÉC / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα E105-86 / 7 Τηλ.: 2610438495, Φαξ: 2610438355 Ao. [10], / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ EPFO / PROJECT: 598 / 1033 / 1414 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** : F7 ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 ΔΕΙΓΜΑ / SAMPLE No. Δ1 : HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20-21/7/2014 2.60-3.00 BAGOS / DEPTH (m) . **ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY:** Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: *ΠΕΛΑΤΗ / CUSTOMER* ΕΡΓΑΣΤΗΡΙΟ / LAB x ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Καστανά αργιλώδη χαλίκια με άμμο ΚΟΣΚΙΝΟ 3/4" 1/2" 3/8" 3" 2" 1" 1 1/2" No4 No10 No40 No200 SIEVE ΑΝΟΙΓΜΑ ΟΠΗΣ (mm) 76.2 50.8 38.1 25.4 4.76 2.00 0.425 19.0 12.5 9.52 0.074

ADETAOT O TAVE	AM	AMIMOZ / SAND XAMIREZ /				GRAVELS _	
CLAY & SILT	ЛЕПТН FINE	MEXH MEDIUM	XONAPH COARSE	ЛЕПТОІ FINE		VIBO	
16.6	7	5	3	10	58		
						+	

ΔΟΚΙΜΕΣ ΚΑΤΑΤΑΞΗΣ / CLASSIFICATION TESTS

OPIA ATTERBERG		YΓΡΑΣΙΑ WATER CONTENT	YΓΡΑΣΙΑ ΦΑΙΝΟΜΕΝΟ ΞΗΡΟ ΦΑΙΝΟΜ WATER ΒΑΡΟΣ ΒΑΡΟΣ CONTENT WET DENSITY DRY DENSIT		EΙΔΙΚΟ BAΡΟΣ SPEC. GRAVITY	ΠΟΣΟΣΤΟ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ORGANIC MATTER	KATATAEH		
LL %	PL %	PI %	w %	γ kN/m ³	Ya kN/m³	Gs	%	AUSCS	
23	13	10	5					GC	
Περιγραφή άμμου Description of sand particles Περιγραφή χαλικιών Description of oravel particles: Τεριγραφή χαλικιών Δεριγραφή χων Δεριγραφή χριγματο δυν Δεριγραφή χων Δεριγραφή χρικου δια δυν Δεριγραφή χων Δεριγραφή χρικου δια δυν Δεριγραφή χρου δια						Ο Ελέγξας Checked by			
Παρατηρήσεις / Remarks : Η δοκιμή εκτελέστ λόγω έλλειψης υλι			ή εκτελέστηκε σε λειψης υλικού	: ποσότητα μικρότερη ο	πό την απαιτούμ	ενη	M		

APERTURE SIZE

PASSING (%)

100.0

51.2

46.3

45.4

41.9

36.2

34.7

31.6

28.9

23.7

16.6

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΗ ΜΗΧΑΝΙΚΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΗ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα ΙΝΔΕΧ ΟF SO Τηλ.: 2610438495, Φαξ: 2610438355 ΑSTM D 4318	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑΡΟΤΗΤΑΣ, ΟΡΙΟΥ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ ΠΛΑΣΤΙΚΟΤΗΤΑΣ (DETERMINATION OF LIQUID LIMIT, PLASTIC LIMIT AND PLASTICIT INDEX OF SOILS) ASTM D 4318 - 10			Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721			
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗ. ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	Σ ΚΩ/	Δ. ΕΡΓΑΣΤΗΡΙΟΥ ORATORY No.	:	598 / 1033 / 1415			
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ГΕΩ	TPHΣH / BORING No.	:	Г2			
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙ	ГМА / SAMPLE No.	:	Δ1			
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20-21/7/2017	BAG	90Σ / DEPTH (m)	:	2.60-3.00			
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου	EAE	ГХӨНКЕ АПО / СНЕСК	ΗΚΕ ΑΠΟ / CHECKED ΒΥ: Α. Σπυρόπουλο				
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	x	TEAATH / CUSTON	MER				
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Καστανά αργιλώδη χαλίκια με άμμο							

				YAAPOT	HTAΣ nination	OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination			
Αριθμός κάψας / Container No. Αριθμός κτύπων / No. of blows N			351	348	430	341	363		
			29	24	18				
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container M ₁			28.91	51.16	36.84	51.07	26.53	1	
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container M2		gr	27.21	49.51	35.00	50.11	25.70		
Βάρος κάψας / Mass of container	M ₃	gr	19.66	42.36	27.30	42.81	19.28		
Περιεχόμενη υγρασία / Water content $w=((M_1-M_2)/(M_2))$	₂ -M ₃))x100	%	22.52	23.08	23.90	13.15	12.93		

: 32

%

Διερχόμενο ποσοστό από το κόσκινο Νο 4

Percent of soil particles passing No 4

Αεροξηραμένο

Air-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Μέθοδος απομάκρυνσης υλικού > 425 μ m (No40) / Method of removing particles > 425 μ m (No40): Με κοσκίνιση

Εξοπλισμός: Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Ο Ελέγξας Checked by

Ξηρό

Oven-dried

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-35

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

X Yypo

Wet

Σελίδα 1 από 1

🚺 ΓΕΩΔΟΜΗ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ : 598 / 1034 / 1416 LABORATORY No. : 598 / 1034 / 1416				
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ2				
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : Δ2				
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 24-26/7/2017	BAΘOΣ / DEPTH (m) : 3.45-3.70				
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο				
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	x REAATH / CUSTOMER				
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Καστανή αμμώδης άργιλος					

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	× А В		EME .
Αριθμός ογκομερικής φιάλης / Pycnometer No.			279
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	M _p	gr	101.28
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.81
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.2
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	P _{w,1}	gr/ml	0.99816
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,l} = M_p + (V_pp_{w,l})$	gr	350.63
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	37.14
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκι Mass of pycnometer+water+soil solids at the test temperature	սńς M _{pws,t}	gr	373.94
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$G_t = M_s / (M_{pw,t} - (M_{pws,t} - M_s))$		2.69
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99996
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.69

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Δ-06-EN-106

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Percent of soil particles passing No 4

Αεροξηραμένο

Air-dried

Ξηρό

Ο Ελέγξας Checked/by

Oven-dried

X Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40): Με κοσκίνιση

Εξοπλισμός: Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Παρατηρήσεις / Remarks:

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Yypó

Wet

θάρος (Wet Unit Weight)	Ξηρο φαινομένο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	κατά τη θραύση (Strain at failure)
Y (kN/m ³)	Ya (kN/m ³)	Gs	S (%)	q _u (kPa)	ε (%)
21.81	19.38	2.69	93.9	803	15.0

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-ΕΝ-41 *Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που/εξετάστηκε στο εργαστήριο

Ο Ελέγξας Checked by

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ (ONE-DIMENTIONAL CONSOLIDATION TEST) ASTM D 2435 - 11

EPFO / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. Ο	& ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓ ΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ -	ΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΠΑΝΔΡΙΤΙ	KΩΔ. LABO	ΕΡΓΑΣΤΗΡΙΟΥ RATORY No.	:	598 / 1034 / 1420
ΕΡΓΟΔΟΤΗΣ / CLIENT	: ΣΙΓΜΑ ΜΕΛΕΤΩ	N AE		ΓΕΩΤΗ	νΗΣΗ / BORING No.		F2
НМЕР. ДЕІГМАТОЛНЧ	ΊΑΣ / DATE OF SAMP	ING: 14/7/2017		ΔΕΙΓΝ	1A / SAMPLE No.	:	Δ2
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ / Ο	ATE OF TESTING:	19-27/7/2017		BAOO	Σ / DEPTH (m)	:	3.45-3.70
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	ΤΕSTED ΒΥ: Α. Σπυ	ρόπουλο		EAED	ОНКЕ АПО / СНЕСК	ED B	Υ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΙ	КТЕЛЕΣΘΗКЕ АПО / S	AMPLING BY:	ΕΡΓΑΣΤΗΡΙΟ / LAB	x	TEAATH / CUSTOM	MER	
ПЕРІГРАФН / DESCRI	ΡΤΙΟΝ: Καστανή αμμ	ώδης άργιλος		-1414 (M		121	

Κατάταξη U.S.C.S. (Group Symbol):			CL							
Γενικά στοιχεία δοκιμίου / Specimen info		1. il	TEENING:	Περιε	χόμενη υγρασία / Water co	ontent		SPACE.		
Αριθμός συσκευής / Odometer No.			17	Αριθι	ιός κάψας / Container No.	312	329	428	390	
Βάρος δακτυλίου / Ring mass		gr	125.79	M _{uyp+}	καψας / wet+con M1	gr	106.83	102.77	115.28	
Ύψος δοκιμίου / Specimen height		cm	2.00	M _{ξηp+}	κάψας / Dry+con M ₂	gr	99.76	94.56	105.62	
Διάμετρος δοκιμίου / Specimen diameter		cm	6.35	Μκάψα	ας / Container M ₃	gr	42.25	27.62	27.44	
Βάρος δοκιμίου+δακτυλίου / Mass of specimen+	ring	gr	265.43	1))=w	M ₁ -M ₂)/(M ₂ -M ₃))x100	%	12.3	12.3	12.4	
Κατάσταση δοκιμίου / Soil condition			Αρχικό Initial	Τελικό Final	Μέση υγρασία Average water content		12.3			
Περιεχόμενη υγρασία / Water content	w	%	12.6	12.8			esta l'An			
Βάρος δοκιμίου / Moist mass of specimen		gr	139.64	139.94	94 Συνθήκες Δοκιμής: Το δείγμα έχει τη φυσική του υ			τική του υγρ	ασία και για	
Ξηρό Βάρος / Dry mass of specimen		gr	124.03	124.03	τη σοκιμή χρησιμοποιειται					
Επιφάνεια δοκιμίου / Specimen area	c	cm ²	31.67		- Μέθοδος Δοκιμής / Method of tes			ing: X A B		
Όγκος δοκιμίου / Specimen volume	c	cm ³	63.34		EEM//////////				a de la calega	
Ειδικό Βάρος κόκκων / Specific gravity	G,	1.2	2.685	2.685	Είδος δοκιμίου	Αδιατάρακτο		/ Intact	x	
Ξηρό φαινόμενο βάρος / Dry unit weight	Ya ki	N/m ³	19.19	19.65 (Type of specimen)		A	ναζυμωμέν	o / Remolde	u 🖓 🖓	
Λόγος κενών / Void ratio e		Neigh	0.371	0.339	Προετοιμασία δοκιμίου:	Τοδ	οκίμιο φτιά	χνεται στο δ	ακτύλιο του	
Βαθμός κορεσμού / Degree of saturation S %		91.04	101.46	κελιού με τη βοήθεια χορδής και μαχαιριού. Στη συνέχεια τοποθετείται στο κελί						
Ύψος στερεών / Equivalent height of solids	H _s	cm	1.459							

TAΣH Load Increment	ΔH	Αρχικό ύψος δοκιμίου Η Specimen height	Λόγος κενών Void ratio	Αξονική παραμόρφωση Axial strain	Δe	Δр	Ε _s	t ₅₀	Cv
kPa	cm	(cm)	е	ε (%)	NE:	NE:	MPa	min	10 ⁻⁴ cm ² /sec
0	0.0000	2.000	0.371	0	1112-2123	10-2	-37/17/1988	16 838	
25	2122	A CONTRACTOR			1112-22			16 28	
50	10						N/AMAS	VANE N	
100						151	2/////85	10. 200	
150	0.0082	1.992	0.366	0.41	0.006	50	12.195	Verses.	11. 18.27 6
198	0.0100	1.990	0.364	0.50	0.001	48	14.334	8	4.063
398	0.0298	1.970	0.351	1.49	0.014	200	20.202	15	2.124
800	0.0616	1.938	0.329	3.08	0.022	402	25.283	30	1.028
398	0.0563	1.944	0.333	2.82	ALCENS.		<i>311111</i> 88		
150	0.0463	1.954	0.339	2.32	Τελικό Δ	ιαφορικό ί	ψος δοκιμίο	u (cm):	0.000

Final differential height

Τάση Διόγκωσης / Swell Pressure	σsp	kPa	$100 < \sigma_{sp} < 150$
Τάση Προφόρτισης / Preconsolidation Pressure	Pc	kPa	
Δείκτης Συμπιεστότητας / Compression Index	Cc	stille.	0.058

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ (DETERMINATION OF LIQUID LIMIT, PLA INDEX OF SOIL ASTM D 4318 -	4ΗΣ APOTHTAΣ, OPIOY I ΠΛΑΣΤΙΚΟΤΗΤΑΣ STIC LIMIT AND PLASTICITY -S) - 10	Δοκιμές / Tests Αρ. Πιστ. / Cert. No. 721
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	Α & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	KΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1035 / 1422
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩ	2N AE	ΓΕΩΤΡΗΣΗ / BORING No. :	Γ2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. :	Δ3
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	20-21/7/2017	BAΘOΣ / DEPTH (m) :	4.50-5.00
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: B. Bά	kbon	ЕЛЕГХӨНКЕ АПО / CHECKED	ΒΥ: Α. Σπυρόπουλο
Н ДЕІГМАТОЛНѰІА ЕКТЕЛЕΣӨНКЕ АПО /	SAMPLING BY: EPFAETHPIO / LAB	X REAATH / CUSTOMER	
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή αμμά	δης άργιλος		

			OPIO Liquid L	YAAPOT	HTAΣ nination	OPIO F Plastic	IΛΑΣΤΙΚΟΊ Limit Determ	ΓΗΤΑΣ ination
Αριθμός κάψας / Container No.		332	406	402	445	379	378	
Αριθμός κτύπων / No. of blows N	32 <u>8</u> .1(55	3%	30	23	18			
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container	M ₁	gr	36.86	53.11	28.27	50.74	34.37	
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	34.80	51.09	26.24	49.77	33.38	
Βάρος κάψας / Mass of container	M ₃	gr	27.30	44.10	19.50	43.77	27.16	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂ -M	M ₃))x100	%	27.47	28.90	30.12	16.17	15.92	State.

Διερχόμενο ποσοστό από το κόσκινο Νο 4 : 100 % Percent of soil particles passing No 4

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Καμπύλη ροής / Flow curve

32

Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40): Με το χέρι

Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης. Εξοπλισμός: Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-EN-35

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Αεροξηραμένο

Air-dried

Ξηρό

Ο Ελέγξας Checked by

Oven-dried

X Yypó Wet

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH) ASTM D2166 / D2166M-16

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ : 598 / 1035 / 1423 LABORATORY No. :
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : $Δ3$
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 19/7/2017	ΒΑΘΟΣ / DEPTH (m) : 4.50-5.00
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ	D / LAB X REAATH / CUSTOMER
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή αμμώδης άργιλος	ΤΟΠΟΘΕΣΙΑ / LOCATION : ΚΑΠΑΝΔΡΙΤΙ

Στοιχεία Δοκιμί	iou / S	Specimen i	nfo
Βάρος / Weight	В	gr	141.86
Ύψος / Height	Н	cm	7.00
Διάμετρος / Diameter	D	cm	3.50
Επιφάνεια / Area	Α	cm ²	9.62
Όγκος / Volume	V	cm ³	67.35
Ρυθμός παραμόρφωσης Average rate of strain	5	%/min	1.4
Κατάταξη U.S.C.S. (Grou	CL		

Παραμόρφωση / Strain (%)

q_u= 354 kPa

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
Y (kN/m³)	Y₀ (kN/m³)	Gs	S (%)	q _u (kPa)	ε (%)
20.64	18.59			354	3.4

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-ΕΝ-41 *Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ (DETERMINATION OF WATER CONTENT) ASTM D 2216 - 10			<u>Δοκιμές / Tests</u> Αρ. Πιστ. / Cert. No: 721	
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ 8 ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔ	ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	KΩΔ	ΕΡΓΑΣΤΗΡΙΟΥ DRATORY No.	;	598 / 1036 / 1424
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ	AE	ΓΕΩΤ	PHΣH / BORING No.	:	Г2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPL	NG: 14/7/2017	ΔΕΙΓ	MA / SAMPLE No.	:	Δ4
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	19-20/7/2017	BAO	OΣ / DEPTH (m)		6.80-7.00
ЕКТЕЛЕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρ	NU	EAE	ХӨНКЕ АПО / СНЕСК	ED	ΒΥ: Α. Σπυρόπουλο
Н ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SA	MPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	×	TEAATH / CUSTOM	1ER	
ПЕРІГРАФН / DESCRIPTION: Τεφρή ιλυώδη	άμμος				1 1

Μέθοδος / Method	AXB		
Αριθμός κάψας / Container No.			355
Βάρος υγρού δείγματος + κάψας Mass moist specimen + container	M _{cms}	gr	153.12
Βάρος ξηρού δείγματος + κάψας Mass dry specimen + container	M _{cds}	gr	136.24
Βάρος κάψας / Mass of container	Mc	gr	42.02
Βάρος ύδατος / Mass of water	M _w	gr	16.88
Βάρος ξηρού δείγματος Mass of oven dry specimen	M₅	gr	94.22
Περιεχόμενη υγρασία Water content	w = (M _w /M _s)x100	%	17.9

Παρατηρήσεις / Remarks:

Δ-06-EN-29

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΕΛΑΦΩΝ (PARTICLE-SIZE ANALYSIS OF SOILS) ΜΗΧΑΝΙΚΗΣ Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα E105-86 / 7 Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Пют. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ 598 / 1036 / 1425 EPFO / PROJECT: : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** 17 : ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 ΔΕΙΓΜΑ / SAMPLE No. Δ4 . HMEP. EKTERETHE / DATE OF TESTING: 20-21/7/2017 BAΘOΣ / DEPTH (m) 6.80-7.00 . ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Β. Βάκρου Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB *ΠΕΛΑΤΗ / CUSTOMER* x ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ιλυώδης άμμος ΚΟΣΚΙΝΟ 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" No40 No200 No4 No10 SIEVE ANOIFMA OTHE (mm) 50.8 25.4 76.2 38.1 19.0 12.5 9.52 4.76 2.00 0.425 0.074 APERTURE SIZE ΔΙΕΡΧΟΜΕΝΟ 100.0 99.2 95.7 35.2 PASSING (%) **ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΕΔΑΦΩΝ / PARTICLE-SIZE ANALYSIS OF SOILS** No 200 2 1/2" 읖 우 1 1/2" 12. 3/4" 3/8 °N N No R : N 100 1 1 1 1 80 l ΠΟΣΟΣΤΟ ΔΙΕΡΧΟΜΕΝΩΝ (%) 0 ΔΙΑΜΕΤΡΟΣ ΚΟΚΚΩΝ / DIAMETER OF SOIL PARTICLES (mm) 001 0.1 10 AMMOZ / SAND XAAIKEZ / GRAVELS ΑΡΓΙΛΟΣ & ΙΛΥΣ 1001 ΛΕΠΤΗ XONAPH ΛΕΠΤΟΙ ΜΕΣΗ XONAPOT CLAY & SILT MEDIUM COARSE FINE FINE COARSE 35.2 61 3 1 ΔΟΚΙΜΕΣ ΚΑΤΑΤΑΞΗΣ / CLASSIFICATION TESTS ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΥΓΡΑΣΙΑ ΦΑΙΝΟΜΕΝΟ ΕΙΔΙΚΟ ΠΟΣΟΣΤΟ **OPIA ATTERBERG** ΒΑΡΟΣ WATER ΒΑΡΟΣ ΒΑΡΟΣ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ATTERBERG LIMITS KATATAEH CONTENT DRY DENSITY SPEC. GRAVITY ORGANIC MATTER WET DENSITY AUSCS G. LL PL PI Yd w % % % kN/m³ kN/m³ % % NP NP NP 17.9 SM Περιγραφή άμμου : Υπογωνιώδεις, σκληροί κόκκοι Ο Ελέγξας Description of sand particles Checked by Περιγραφή χαλικιών : Description of gravel particles:

Παρατηρήσεις / Remarks :

nupunprioris / Remains .

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

EPFO / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	KΩΔ. LABO	ΕΡΓΑΣΤΗΡΙΟΥ RATORY No.		598 / 1037 / 1427
ΕΡΓΟΔΟΤΗΣ / CLIENT	Γ: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤ	PHΣH / BORING No.	:	Г2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗ	ΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓ	MA / SAMPLE No.	:	Δ5
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ /	DATE OF TESTING: 20-22/7/2017	BAOO	Σ / DEPTH (m)	:	8.30-8.60
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	' ΤΕSTED ΒΥ: Β. Βάκρου	EVEL	ХӨНКЕ АПО / СНЕСК	ED B	Υ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Β	EKTEAEZOHKE AND / SAMPLING BY: EPFAETHPIO / LAB	x	TEAATH / CUSTOM	1ER	
ΠΕΡΙΓΡΑΦΗ / DESCR	IPTION: Τεφρή ιλυώδης άμμος	21225			

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	x A B		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			279
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	Mp	gr	101.28
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.81
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.6
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	Pw,t	gr/ml	0.99808
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t} = M_{p} + (V_{p}p_{w,t})$	gr	350.61
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	37.23
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκι Mass of pycnometer+water+soil solids at the test temperature	ιμής Μ _{pws,ι} e	gr	374.01
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$\mathbf{G}_{l} \texttt{=} \mathbf{M}_{s} / (\mathbf{M}_{pw, l} \texttt{-} (\mathbf{M}_{pws, l} \texttt{-} \mathbf{M}_{s}))$		2.69
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99987
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.69

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Το αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

∆-06-EN-104

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ

ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

EKΘEΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) ASTM D 854 - 14

Δοκιμές / Tests Αρ. Πιστ. / Cert. No: 721

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗ: ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	Σ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.		598 / 1038 / 1431
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No.	11:	Г2
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.		Δ6
ΗΜΕΡ. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20-22/7/2017	BAΘOΣ / DEPTH (m)	1.	9.15-9.50
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου	ЕЛЕГХӨНКЕ АПО / СНЕСК	ED BY	: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	× TIEAATH / CUSTOM	1ER	23 N. A. S. Navi
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή αμμώδης ιλύς		All'S	and Aller

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	x A B		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			280
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	M _p	gr	90.84
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.77
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.6
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	P _{w.t}	gr/ml	0.99808
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t} = M_{p} + (V_{p}p_{w,t})$	gr	340.13
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	37.47
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκ Mass of pycnometer+water+soil solids at the test temperatur	ιμής Μ _{pws,t} e	gr	363.61
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$G_{\mathfrak{l}} = M_{\mathfrak{s}} / (M_{pw,\mathfrak{l}} \text{-} (M_{pw,\mathfrak{l}} \text{-} M_{\mathfrak{s}}))$		2.68
Συντελεστής θερμοκρασίας Temperature coefficient	к		0.99987
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.68

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by M

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

∆-06-EN-104

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο
 ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ ΜΗΧΑΝΙΚΗΣ (DETERMINATION OF WATER CONTENT) Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα ASTM D 2216 - 10 Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Пют. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ EPFO / PROJECT: 598 / 1039 / 1435 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ ΓΕΩΤΡΗΣΗ / BORING No. : Γ2 ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 ΔΕΙΓΜΑ / SAMPLE No. Δ7 : HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 19-20/7/2017 BAGOS / DEPTH (m) 10.30-10.60 : ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB x *ΠΕΛΑΤΗ / CUSTOMER* ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ιλυώδης άμμος

Μέθοδος / Method	AXB		
Αριθμός κάψας / Container No.			394
Βάρος υγρού δείγματος + κάψας Mass moist specimen + container	M _{cms}	gr	161.01
Βάρος ξηρού δείγματος + κάψας Mass dry specimen + container	M _{cds}	gr	146.95
Βάρος κάψας / Mass of container	Mc	gr	43.06
Βάρος ύδατος / Mass of water	M _w	gr	14.06
Βάρος ξηρού δείγματος Mass of oven dry specimen	M _s	gr	103.89
Περιεχόμενη υγρασία Water content	$\mathbf{w} = (M_w/M_s)x100$	%	13.5

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

∆-06-EN-29

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

∆-06-EN-104

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ ΜΗΧΑΝΙΚΗΣ (DETERMINATION OF WATER CONTENT) Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα ASTM D 2216 - 10 Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Пют. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ EPFO / PROJECT: 598 / 1040 / 1438 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. **ΕΡΓΟΔΟΤΗΣ / CLIENT:** ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** Γ2 :

ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 **ΔΕΙΓΜΑ / SAMPLE No.** Δ8 : HMEP. EKTEREZHZ / DATE OF TESTING: 19-20/7/2017 BAOOS / DEPTH (m) 13.10-13.50 : **ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY:** Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB x *ΠΕΛΑΤΗ / CUSTOMER* ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή αμμώδης ιλύς

Μέθοδος / Method	АХВ		
Αριθμός κάψας / Container No.			342
Βάρος υγρού δείγματος + κάψας Mass moist specimen + container	M _{cms}	gr	144.80
Βάρος ξηρού δείγματος + κάψας Mass dry specimen + container	M _{cds}	gr	133.77
Βάρος κάψας / Mass of container	M _c	gr	42.59
Βάρος ύδατος / Mass of water	Mw	gr	11.03
Βάρος ξηρού δείγματος Mass of oven dry specimen	M _s	gr	91.18
Περιεχόμενη υγρασία Water content	$\mathbf{w} = (M_w/M_s)x100$	%	12.1

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Δ-06-EN-29

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΕΡΓΑ Παρ. Διοδι Τηλ.: 261 ΤΟ / PRO: ΓΟΔΟΤΗΣ ΙΕΡ. ΔΕΙΓΙ ΙΕΡ. ΕΚΤΕ ΤΕΛΕΣΘΗ	ΣΤΗΡΙ ΔΤΗΡΙ ΜΗΣ Δίμρου 10 043849 DECT: / CLIE ΜΑΤΟΛ ΛΕΣΗΣ ΚΕ ΑΠΟ	Ο ΓΕΩ ΧΑΝΙΚΗ 60, Τ.Κ. 95, Φαξ Ι κΑ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	ΟΜΙ ΤΕΧΝΙΚ 12 26443, 26104 20ΤΕΧΝΙΗ 20ΤΕΧΝΙΗ 21ΓΝ 21ΓΝ 21ΓΝ 21ΓΝ 21ΓΝ 21ΓΝ 21ΓΝ 21ΓΝ	ΗΣ Πάτρα 38355 ΚΗ ΕΡΕΥΝΑ ΗΣΗΣ ΕΠ. ΜΑ ΜΕΛΕΤ ΟF SAMI STING: B. Bč	Α & ΜΕΛΕ ΟΔΟΥ ΑΓ. ΩΝ ΑΕ 20-21 , ικρου	ΕΚΘΕ: (ΓΗ ΚΑΤΕΓ ΓΕΩΡΓΙΟ 14/7/2 17/2017	ΣΗ ΔΟΚ (PARTI(ΙΕΙΓΟΥΣΑ ΙΣ - ΚΑΠΑ 1017	CLE-SIZ E Σ ANTIM ΝΔΡΙΤΙ	(ΟΚΚΟΝ ΕΔΑΦΩ (Έ ΑΝΑΙ 105-86 ΕΤΩΠΙΣΗ	METP N LYSIS / 7 IZ K L L E B E	ΙΚΗΣ ΑΙ Ο Γ SO ΔΟ Γ SO ΔΑ. ΕΡΓΑ ΔΒΟ Γ ΑΙ ΕΩΤΡΗΣΙ ΕΙΓΜΑ / ΑΘΟΣ / ΛΕΓΧΘΗ	NAΛYΣH ILS) AΣTHΡΙΟ ORY No. H / BORI SAMPLE DEPTH (r KE AΠO /	Σ Y NG No. No. n)	Αρ : 5 : : : : : : :	Δοκιμ 598 / 10 13.1 : Α. Σπι	ές / τ / Cen. 040 / Γ2 Δ8 Ι0-13
ΕΙΓΜΑΤΟ	олнчи	A EKTE	лехөнк	КЕ АПО /	SAMPLIN	IG BY:		ΕΡΓΑΣΤΗ	PIO / LAE	3	x	ΠΕΛΑΤΗ ,	CUSTOM	IER		
РІГРАФН	/ DES	CRIPTI	ON: T	εφρή αμμα	ັນຈັຖຸ ເນບ່ິຊ			12								
	KOΣKIN SIEVE	0		3"	2"	1 1/2"	1"	3/4"	1/2"	3/8	" No4	No10	No40	No2	00	
		IA ONH	Σ (mm)	76.2	50.8	38.1	25.4	19.0	12.5	9.5	2 4.76	5 2.00	0.425	0.07	74	
	ΔΙΕΡΧΟ	MENO						133		100.	0 99.9	99.1	95.9	59.	4	
Ľ	PASSIN	<u>u (%)</u>				1 1 2 31		112-123				A STATES		1000.72		
12 3			KOKK	OMETRI			ΔΦΩΝ	/ ₽٨₽				S OF SC				
	No.		NORK	0		2n E.		TAR	-9FE-9	A	INAL ()	J OF SC			1	
	No 200		No 20	No 40		Vo 40		4o 10	40 4	3/8"	112"	1" 1 1/2"	2" 2 1/2"			
100				TIT				120	1			1 1		TI	1	
	-					/		13	1	-1	i			- i		
80					/											
					/			130	1	i	- I	i		-		
°260				/				12		1	1	1 1		11		
SSIN				I		i		33								
OME								133								
				I				12		1			1 1		1	
CEN	-							3		1	İ	1		1		
L 20	-							10		1						
BOL				i		-		12	1	i				11	i-	
0						i		E	1				3 11			
0	01			DIAN 0.1	ΙΕΤΡΟΣ Κ	ΟΚΚΩΝ	/ DIAMI	ETER OF	SOIL P/	ARTIC	LES (mr 1	n) D				
						AMM	OΣ / SA	ND		T.	XAX	IKES /	GRAVEL	S		
	API	CLAY &	& IAY2 SILT		ЛЕПТН FINE		MEΣH MEDIUM XONΔPH COARSE		APH RSE	ΛΕΠΤ FIN	OI E		POI SE	VIBOI	VIBOI	
		59.4	1		37		3				1				×.	
				ΔΟΚΙ	MES KA	TATA	ΞΗΣ / C	LASSI	ICATIO	ON T	ESTS					
OPIA A ATTERI	TTERB BERG LI	ERG	YFPA WATE CONTE	ΣIA ΦA ER ENT WE	NOMENC 3APOΣ T DENSITY	EHPO E	ΦΑΙΝΟΜ 3ΑΡΟΣ ' DENSIT	ENO Y S	EIΔIKO BAPOΣ PEC. GRAV		ΠΟ ΟΡΓΑΝΙΗ ORGAN	ΣΟΣΤΟ (ΩΝ ΟΥΣΙ IIC MATTER	ΩΝ	(ATAT	AEH	1000
LL %	PL %	PI %	w %		Y kN/m ³		Yd kN/m ³	1111	G _s			%		AUSC	CS	Ser 10
NP	NP	NP	12.	1				100				70		ML	-	1923
Ιεριγραφή lescription α lεριγραφή lescription lαρατηρι	άμμου of sand p χαλικιώ of oravel σεις /	oarticles ov particles Remarks	<u>ι</u> : Υπ : s:	ογωνιώδε	ις, μέτρια ι	<u>Ι</u> σκληροί κ	όκκοι	98		Carrotte et a			c c) Eλέγξ heckec	şaç 1/by	

∆-06-EN-104

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (DETERMINATION OF THE POINT LOAD STRENGTH INDEX) ASTM D 5731-16

Ар. Пют. / Cert. No: 721

ЕРГО / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕ	ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΏΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1041 / 1441
ΕΡΓΟΔΟΤΗΣ / CLIENT:	ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ		ΓΕΩΤΡΗΣΗ / BORING No.:	Г2
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨ	IAΣ / DATE OF SAMPLING:	14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. :	С П1
ΗΜΕΡ/ΝΙΑ ΕΚΤΕΛΕΣΗ	Σ / DATE OF TESTING:	19/7/2017	BAΘOΣ / DEPTH (m) :	14.90-15.00
ΕΚΤΕΛΕΣΤΗΚΕ ΑΠΟ / 1	ESTED BY: B. Bakpou		ЕЛЕГХӨНКЕ АПО / СНЕСКЕД	ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΙ	ΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING	ΒΥ: ΕΡΓΑΣΤΗΡΙΟ / LAB	x REAATH / CUSTOME	R

Λιθολογική περιγραφή Lithologic description:	Τεφή Μάργα										
Συνθήκες υγρασίας δείγματος Moisture condition of the specimen:	Όπως παραλ	λήφθηκε									
Τύπος δοκιμής - Τύπος θραύσης Test type - type of failure:	Διαμετρική -	Η θραύσι	η είναι έι	үкирп							
Αριθμός Δοκιμίου / Specimen Number:		1	2	3	4	5	6	1	8	9	10
Απόσταση σημείου δοκιμής - ελάχιστου ελεύθερου άκρου / Distance between contact points and nearest free face	L (mm)	58.74									
Διάμετρος / Diameter	D (mm)	71.0					120 H	EZ,	122		
	L/D	0.83					SE -		1/202		
Φορτίο θραύσης / Failure load	P (N)	9900							1/202		
Δείκτης Σημειακής Φόρτισης Uncorrected Point Load strength index	I _s (MPa)	1.96									
Διορθωμένη τιμή δείκτη Σημειακής Φόρτισης Corrected Point Load strength index	I _{s(50)} (MPa)	2.30									
Συντελεστής ανισοτροπίας Point Load strength anisotropy index	lα					1111					
Ισοδύναμη αντοχή σε μονοαξονική θλίψη Estimated uniaxial compressive strength	σ _c (MPa)	52.3									
Μέση τιμή I _{s(50)} (MPa) Mean Value	2.30	Xi	αρακτηρισ	μός με βάσ U	rη την ισοδύ CS Strength	ίναμη αντοχ classificatio	ή σε μοναί 2n	ξονική θλίψ	ή	(ISRM 19	978)
Μέση τιμή σ _c (MPa) Mean Value	52.3				Υψηλής	; αντοχής	; / High :	strength			

	Βαθμολόγηση ακέραιου βραχώδους υλικού για RMR: RMR Intact rock material rating:	7	(Beniawski 1989)	
 Συσκευή σημειακής φόρ Ψηφιακό παχύμετρο 300 	τισης Impact AG187με Αριθμ. Πιστοπ. Διακρίβωσης 22SK Jmm, MITUTOYO CD-12"PS με Αριθμ. Πιστοπ. Διακρίβωα	161118N σης 10MC	IC 2161114NA	

Παρατηρήσεις / Remarks:

Test apparatus used

Χρησιμοποιούμενος Εξοπλισμός:

Η δοκιμή εκτελέστηκε σε λιγότερα από 10 δοκίμια λόγω έλλειψης υλικού

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

			as apulat			
ΓΕΩΔΟΜ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 2644 Τηλ.: 2610438495, Φαξ: 26104	Η (ΗΣ 3, Πάτρα 138355	ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΕ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑ RMINATION OF THE POINT ASTM D 573	ΔΙΑΠΙΣΤΕΥΜΕΝΟ ΕΡΓΑΣΤΗΡΙΟ ΔΟΚΙΜΩΝ - ΕΣΥΔ ESYD ACCREDITED TEST LABORATORY			
ΓΕΩΤΡΗΣΗ / BORING No.:	Γ2	ΔΕΙΓΜΑ / SAMPLE No.:	П1	ΒΑΘΟΣ / DEPTH	(m) :	14.90-15.00
Докі	puo 1 / Specimen 1		Δοκίμιο 6	/ Specimen 6		
Δοκί	μιο 2 / Specimen 2		Δοκίμιο 7	/ Specimen 7		
Δοκ	iμιο 3 / Specimen 3		Δοκίμιο 8	: / Specimen 8		
Δοκ	iµıo 4 / Specimen 4		Δοκίμιο 9) / Specimen 9		
Док	tiμιο 5 / Specimen 5		Δοκίμιο 10) / Specimen 10		

Ο ελέγξας Checked by

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο
 ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

C			ДІАМЕ 0.1	ΙΕΤΡΟΣ ΚΟΚΚΩΝ / DIAMETER 1 ΑΜΜΟΣ / SAND			ER OI	OF SOIL PARTIC		CLES (mm) 10 ΧΑΛΙΚΕΣ / G		GRAVELS		
202TO ALEPXOMEN2N (%) PERCENTAGE PASSING 07 07 08 00 08 09 08 09 00 08	KOΣKINO SIEVE ANOIГMA OΠΗ2 APERTURE SIZE ΔΙΕΡΧΟΜΕΝΟ PASSING (%)		3" 76.2 ETPIK	2" 50.8	1 1/2" 38.1 ΥΣΗ Ε/	1" 25.4 ΔΑΦΩΝ /	3/4" 19.0 PAR'	1/2" 12.5 TICLE-SI	3/8" 9.52 ZE AN	No4 4.76 100.0 ALYSIS	No10 2.00 100.0 OF SOI	No40 0.425 99.7	No200 0.074 94.6 	
ΕΡ. ΕΚΤΕ ΈΛΕΣΘΗ ΕΙΓΜΑΤΟ ΡΙΓΡΑΦΗ	ΕΛΕΣΗΣ / DATE IKE ΑΠΟ / TES ΟΛΗΨΙΑ ΕΚΤΕΛ I / DESCRIPTI	E OF TESTIN TED BY: ΛΕΣΘΗΚΕ ΑΙ ΟΝ: Τεφρή	IG: Β. Βάκ ΠΟ / S. άργιλα	21-22/3 pou AMPLIN	7/2017 G BY:	EF	ΓΑΣΤΗ	ipio / Lab	BA EA X	ΘΟΣ / DE E ΓΧΘΗΚΕ ΠΕ	р тн (m Апо / (Елатн / () CHECKE CUSTOMI	: D BY: / ER	15.40-16.00 Α. Σπυρόπου <i>λ</i>
Ο / ΡΑΟ ΟΔΟΤΗΣ ΈΡ. ΔΕΙΓ	MATOΛΗΨΙΑΣ	<u>ΣΙΓΜΑ Μ</u> ΣΙΓΜΑ Μ	<u>Σ ΕΠ. Ο</u> ΙΕΛΕΤΩ SAMPL	AOY AF. N AE ING:	<u>ΓΕΩΡΓΙΟ</u> 14/7/2	<u>Σ - ΚΑΠΑΝ</u> 017	ΔΡΙΤΙ		LΑ ΓΕ! ΔΕ	BORATOR ΩΤΡΗΣΗ / ΙΓΜΑ / S/	AMPLE N	G No. Io.	: 598	Γ2 Δ9
αρ. Διοδ ηλ.: 261	ΔΣΤΗΡΙΟ ΓΕΩ ΜΗΧΑΝΙΚΗ δώρου 160, Τ.Κ. 10438495, Φαξ	TEXNIKHΣ 4Σ 26443, Πάτ 26104383 ΩΤΕΧΝΙΚΗ Ε	ρα 55 PEYNA	& MEAET	ΕΚΘΕΣ (Η ΚΑΤΕΠ	ΈΗ ΔΟΚΙ PARTICL ΕΙΓΟΥΣΑΣ	MHΣ E-SI E ANTIM	ΚΟΚΚΟΜ ΕΔΑΦΩΓ ΖΕ ΑΝΑL 105-86 /	ETPII N YSIS 7 7	(ΗΣ ΑΝΑ OF SOIL: Δ. ΕΡΓΑΣ	ΛΥΣΗΣ S) THΡΙΟΥ		Ap. F	

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο
 Σήδ
 ΣΥΣΤΗΜΑ ΠΙΟΙΤΗΔΣ

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ (DETERMINATION OF LIQUID LIMIT, PLA INDEX OF SOI ASTM D 4318	ΜΗΣ ΑΡΟΤΗΤΑΣ, ΟΡΙΟΥ Η ΠΛΑΣΤΙΚΟΤΗΤΑΣ ISTIC LIMIT AND PLASTICITY LS) - 10	Δοκιμές / Tests Αρ. Πιστ. / Cert. No. 721
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝ/ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	Α & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1042 / 1443
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤ	ΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. :	ГZ
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	Δ9
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	21-22/7/2017	BAΘOΣ / DEPTH (m) :	15.40-16.00
ЕКТЕЛЕΣӨНКЕ АПО / TESTED BY: В. Ва	κρου	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	SAMPLING BY: EPFATTHPIO / LAB	X REAATH / CUSTOME	R
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλ	λος		

		1111	OPIO Liquid L	YAAPOT	HTAΣ nination	OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination		
Αριθμός κάψας / Container No.				409	379	373	395	12.
Αριθμός κτύπων / No. of blows N				26	20			No.
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container		gr	29.13	28.84	52.22	51.42	27.48	150
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container	M ₂	gr	26.49	26.29	49.80	50.25	26.41	
Βάρος κάψας / Mass of container	M ₃	gr	19.50	19.72	43.77	42.95	19.63	12
Περιεχόμενη υγρασία / Water content w=((M1-M2)/(M2	2-M3))x100	%	37.77	38.81	40.13	16.03	15.78	

n an stad an an stad

∆-06-EN-35

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Π ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ ΜΗΧΑΝΙΚΗΣ (DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH) Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα ASTM D2166 / D2166M-16 Τηλ.: 2610438495, Φαξ: 2610438355

ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	Σ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No. : 598 / 1042 / 1444			
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ2			
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : Δ9			
HMEP. EKTEΛΕΣΗΣ / DATE OF TESTING: 20/7/2017	ΒΑΘΟΣ / DEPTH (m) : 15.40-16.00			
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο			
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB	x NEAATH / CUSTOMER			
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος	ΤΟΠΟΘΕΣΙΑ / LOCATION : ΚΑΠΑΝΔΡΙΤΙ			

900

800

700

600

(#500 A)

N tion Stress (1

100

0

0

Στοιχεία Δοκιμ	íou / S	pecimen	info
Βάρος / Weight	В	gr	2126.83
Ύψος / Height	H	cm	18.54
Διάμετρος / Diameter		cm	8.15
Επιφάνεια / Area	Α	cm ²	52.10
Όγκος / Volume	V	cm ³	965.75
Ρυθμός παραμόρφωση Average rate of strain	S	%/min	1.4
Κατάταξη U.S.C.S. (Gro	up syml	bol)	CL

Υγρασία / Water content						
Αριθμός κάψας /	443					
m _{υγp} + m _κ	gr	153.75				
m _ξ + m _κ	gr	141.04				
m _K	gr	42.58				
m _{võ}	gr	12.71				
m _ξ	gr	98.46				
$m_{u\delta} / m_{\xi} = w$	%	12.9				

ΣΧΕΔΙΟ ΘΡΑΥΣΗΣ

T=C

-

Ο Ελέγξας Checked by

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
γ	Yd	Gs	S	q _u	Ε
(kN/m ³)	(kN/m ³)		(%)	(kPa)	(%)
21.58	19.11			788	5.0

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

2

4

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ Σελίδα 1 από 1

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (DETERMINATION OF THE POINT LOAD STRENGTH INDEX) ASTM D 5731-16

Ар. Пют. / Cert. No: 721

EPFO / PROJECT:	ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙ	ΞΗΣ	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	598 / 1043 / 1445	
ΕΡΓΟΔΟΤΗΣ / CLIENT	: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ			ΓΕΩΤΡΗΣΗ / BORING No.:	Г2
НМЕР. ДЕІГМАТОЛНЧ	JIAΣ / DATE OF SAMPLING: 14	4/7/2017		ΔΕΙΓΜΑ / SAMPLE No. :	П2
ΗΜΕΡ/ΝΙΑ ΕΚΤΕΛΕΣΗ	Σ / DATE OF TESTING: 19	9/7/2017	12	BAΘOΣ / DEPTH (m) :	17.10-17.50
ΕΚΤΕΛΕΣΤΗΚΕ ΑΠΟ /	ΤΕՏΤΕΟ ΒΥ: Β. Βάκρου	X1224008881.	12/13	ЕЛЕГХӨНКЕ АПО / CHECKED	ΒΥ: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ Ε	KTEΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY:	ΕΡΓΑΣΤΗΡΙΟ / LAB	x	ΠΕΛΑΤΗ / CUSTOME	R

Λιθολογική περιγραφή Lithologic description:	Τεφρή Μάργ	Τεφρή Μάργα									
Συνθήκες υγρασίας δείγματος Moisture condition of the specimen:	Όπως παρα	Οπως παραλήφθηκε									
Τύπος δοκιμής - Τύπος θραύσης Test type - type of failure:	Διαμετρική -	Διαμετρική - Η θραύση είναι έγκυρη									
Αριθμός Δοκιμίου / Specimen Number:		12	2	3	4	5	6	7	8	9	10
Απόσταση σημείου δοκιμής - ελάχιστου ελεύθερου άκρου / Distance between contact points and nearest free face	L (mm)	124.14									
Διάμετρος / Diameter	D (mm)	71.5									
	L/D	1.74		S.M.							
Φορτίο θραύσης / Failure load	P (N)	960		NSMA.	1200	60.35		NER		3121626	
Δείκτης Σημειακής Φόρτισης Uncorrected Point Load strength index	I _s (MPa)	0.19									
Διορθωμένη τιμή δείκτη Σημειακής Φόρτισης Corrected Point Load strength index	I _{s(50)} (MPa)	0.22									
Συντελεστής ανισοτροπίας Point Load strength anisotropy index	Ia ?	Vie	A								
Ισοδύναμη αντοχή σε μονοαξονική θλίψη Estimated uniaxial compressive strength	σ _c (MPa)	5.1									
Μέση τιμή I _{s(50)} (MPa) Mean Value	0.22	Xt	σρακτηρισ	ιμός με βάα υ	η την ισοδι CS Strength	ύναμη αντι h classifica	οχή σε μονα tion	ξονική θλίι	μη Ι	(ISRM 19	978)
Μέση τιμή σ _c (MPa) Mean Value	5.1	12	Χαμηλής αντοχής / Low strength								

Βαθμολόγηση ακέραιου βραχώδους υλικού για RMR: RMR Intact rock material rating:	2	(Beniawski 1989)

Χρησιμοποιούμενος Εξοπλισμός: Test apparatus used 1. Συσκευή σημειακής φόρτισης Impact AG187με Αριθμ. Πιστοπ. Διακρίβωσης 22SK161118NC 2. Ψηφιακό παχύμετρο 300mm, MITUTOYO CD-12"PS με Αριθμ. Πιστοπ. Διακρίβωσης 10MC161114NA

Παρατηρήσεις / Remarks:

Η δοκιμή εκτελέστηκε σε λιγότερα από 10 δοκίμια λόγω έλλειψης υλικού

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355			ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ TERMINATION OF THE POINT LOAD STRENGTH INDEX) ASTM D 5731-16				ΠΙΣΤΕΥΜΕΝΟ ΡΓΑΣΤΗΡΙΟ ΚΙΜΩΝ · ΕΣΥΔ ACCREDITED LABORATORY
ΓΕΩΤΡΗΣΗ / BORING No.:	Г	2	ΔΕΙΓΜΑ / SAMPLE No.:	П2	ΒΑΘΟΣ / DEPTH	(m) :	17.10-17.50
۵	окіµю 1 / Spe	cimen 1		Δοκίμιο 6 /	Specimen 6		
Â	экіµю 2 7 Spe	scimen 2		Δοκίμιο 7 /	Specimen 7		
Δα	окіµю 3 / Spe	ecimen 3		Δοκίμιο 8 <i>/</i>	Specimen 8		
Δα	окіµю 4 / Spe	ecimen 4		Δοκίμιο 9 /	' Specimen 9		
Δα	окіµю 5 / Spa	ecimen 5		Δοκίμιο 10 ,	/ Specimen 10		
					Ο ελέγξς Checked	ις by	

* Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΕΙΔΙΚΟΥ ΒΑΡΟΥΣ ΚΟΚΚΩΝ ΜΗΧΑΝΙΚΗΣ (DETERMINATION OF SPECIFIC GRAVITY OF SOIL SOLIDS) Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα ASTM D 854 - 14 Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Піот. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ EPFO / PROJECT: 598 / 1044 / 1446 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** : Γ2 ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 **ΔΕΙΓΜΑ / SAMPLE No.** Δ10 : HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 24-26/7/2017 BAGOE / DEPTH (m) 19.50-20.00 : **ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY:** Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB x *ΠΕΛΑΤΗ / CUSTOMER* ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος

Διερχόμενο ποσοστό από το κόσκινο No 4 Percent of soil particles passing No 4 sieve	100 %		
Χρησιμοποιούμενη Μέθοδος / Method used:	x A B		
Αριθμός ογκομερικής φιάλης / Pycnometer No.			640
Μέσο βάρος πυκνομέτρου Average calibrated mass of the dry pycnometer	М _р	gr	97.33
Μέσος βαθμονομημένος όγκος πυκνομέτρου Average calibrated volume of the pycnometer	Vp	ml	249.84
Θερμοκρασία εκτέλεσης δοκιμής Test temperature	Θ	°C	20.2
Πυκνότητα νερού στη θερμοκρασία εκτέλεσης δοκιμής Density of water at the test temperature	Ρ _{w,1}	gr/ml	0.99816
Βάρος πυκνομέτρου+νερού στη θερμοκρασία δοκιμής Mass of the pycnometer+water at the test temperature	$M_{pw,t}=M_p+(V_pp_{w,t})$	gr	346.71
Βάρος ξηραμένου στο φούρνο δείγματος Mass of the oven dry soil solids	Ms	gr	37.01
Βάρος πυκνομέτρου+νερού+δείγματος στη θερμοκρασία δοκ Mass of pycnometer+water+soil solids at the test temperatur	αμής Μ _{pws,t}	gr	369.94
Ειδικό βάρος κόκκων στη θερμοκρασία δοκιμής Specific gravity of soil solids at the test temperature	$G_t = M_s / (M_{pw,t^-}(M_{pws,t^-}M_s))$	the states	2,69
Συντελεστής θερμοκρασίας Temperalure coefficient	к	91-1914 1-1914	0.99996
Ειδικό βάρος κόκκων σε θερμοκρασία 20°C Specific gravity of soil solids at 20°C	G _{20°C} =KG _t		2.69

Παρατηρήσεις / Remarks:

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΠΛ ΓΕΩΔΟΜΗ ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΕ ΚΟΣΚΙΝΑ & ΑΡΑΙΟΜΕΤΡΟ ΜΗΧΑΝΙΚΗΣ (HYDROMETER ANALYSIS OF SOILS) Δοκιμές / Tests Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα E 105 - 86 (7,9) Τηλ.: 2610438495, Φαξ: 2610438355 Ар. Піσт. / Cert. No: 721 ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ **EPFO / PROJECT:** 598 / 1044 / 1447 : ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ LABORATORY No. ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ **ΓΕΩΤΡΗΣΗ / BORING No.** : ٢2 HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017 **ΔΕΙΓΜΑ / SAMPLE No.** : Δ10 HMEP. EKTERESHS / DATE OF TESTING: 21-26/7/2017 BAΘOΣ / DEPTH (m) 19.50-20.00 : ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / ΤΕSTED ΒΥ: Β. Βάκρου ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LAB x *ПЕЛАТН / CUSTOMER* ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος ΚΟΣΚΙΝΟ 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" No10 No200 No4 No40 SIEVE ΑΝΟΙΓΜΑ ΟΠΗΣ (mm) 76.2 50.8 38.1 25.4 19.0 12.5 9.52 4.76 2.00 0.425 0.074 APERTURE SIZE ΔΙΕΡΧΟΜΕΝΟ 100.0 99.6 99.5 99.0 97.0 PASSING (%) ANAΛΥΣΗ ΜΕ APAIOMETPO HYDROMETER TEST **ΑΝΑΛΥΣΗ ΜΕ ΚΟΣΚΙΝΑ / SIEVE ANALYSIS** No 200 \$ 2 2 12 8 112 3/4 ^oN Ŷ R = N Nin 100 80 ΠΟΣΟΣΤΟ ΔΙΕΡΧΟΜΕΝΩΝ (%) PERCENTAGE PASSING 09 09 09 1 1 1 20 1 0 ΔΙΑΜΕΤΡΟΣ ΚΟΚΚΩΝ / DIAMETER OF SOIL PARTICLES (mm) 0.001 0.01 10 0.1 1 AMMOZ / SAND XAAIKEZ / GRAVELS ΑΡΓΙΛΟΣ IOGIN IAYE / SILT AEITTH METH XONAPH ΛΕΠΤΟΙ XONAPOI CLAY FINE MEDTUM COARSE FINE COARSE 37 60 2 1 . -. ΔΟΚΙΜΕΣ ΚΑΤΑΤΑΞΗΣ / CLASSIFICATION TESTS ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΥΓΡΑΣΙΑ ΦΑΙΝΟΜΕΝΟ ΕΙΔΙΚΟ ΠΟΣΟΣΤΟ **OPIA ATTERBERG** ΒΑΡΟΣ ΒΑΡΟΣ WATER ΒΑΡΟΣ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙΩΝ ATTERBERG LIMITS KATATAEH CONTENT WET DENSITY DRY DENSITY SPEC. GRAVITY ORGANIC MATTER AUSCS LL PI PI Yd w G. % % % % kN/m³ kN/m³ % 48 17 31 11.3 2.69 CL Περιγραφή άμμου Ο Ελέγξας : Description of sand particles Checked by Περιγραφή χαλικιών : Description of gravel particles: Παρατηρήσεις / Remarks :

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

A-06-EN-106

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
Y (kN/m ³)	Y₄ (kN/m³)	Gs	S (%)	q _u (kPa)	ε (%)
22.21	19.95	2.69	95.3	2718	3.2

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ Δ-06-ΕΝ-41

ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

Ο Ελέγξας Checked b

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355					EKØE	ΣΗ ΔΟΚ (PARTIO	αίμης CLE-SI	ΚΟΚΚΟΙ ΕΔΑΦΩ IZE ANAI E105-86	METP N LYSIS / 7	ΊΚΗΣ ANA 5 OF SOIL	ΑΛΥΣΗΣ .S)	Ξ	<u>д</u> Ар. П	Δοκιμές / Tests Ιιστ. / Cert. No: 721	
EPFO / PR	OJECT:	ГЕ		EPEYNA	& MEAET				ΜΕΤΩΠΙΣΗ	ΣΚ	ΩΔ. ΕΡΓΑΣ	THPIO	1	; 598	8 / 1045 / 1450
ЕРГОДОТН	IE / CL	IENT:	ΣΙΓΜΑ Ι		2N AE	TEMPTIC	<u>JZ - KAHA</u>		1 Start Start	Г	<u>ΑΒΟΚΑΤΟ</u> ΈΩΤΡΗΣΗ	/ BORI	NG No.		Г2
ΗΜΕΡ. ΔΕΙ	ГМАТС	ΟΛΗΨΙΑΣ	/ DATE OF	SAMP	LING:	14/7/2	2017			4	EIFMA / S	AMPLE	No.		Δ11
HMEP. EKT	ΓΕΛΕΣΗ	Σ / DATE	OF TESTI	NG:	21-22/	7/2017				E	BAOOE / DI	EPTH (n	1)	1	22.30-22.60
ΕΚΤΕΛΕΣΘ	HKE A	TO / TES	TED BY:	B. Bàk	(pou	Exter		(dala))	1.4.9/18	E	легхөнк	Е АПО /	CHECKE	DBY: A	. Σπυρόπουλο
	толнч	IA EKTE	ΛΕΣΘΗΚΕ Α	по / s	SAMPLIN	G BY:		ΕΡΓΑΣΤ	HPIO / LAE	3	х П	EAATH /	CUSTOM	ER	
ПЕРІГРАФ	H / DE	SCRIPTI	οΝ: Τεφρ	ή άργιλα	ος	Sau a		(Alelli		States					
	ΙκοΣκ	INO		211		4.4.(2)		224	1	2/0			11-40		1
	SIEVE		1244	3"	2"	1 1/2"	1	3/4"	1/2"	3/8	" N04	No10	N040	No200	
	ANOI	TURE SIZE	2 (mm)	76.2	50.8	38.1	25.4	19.0	12.5	9.5	2 4.76	2.00	0.425	0.074	
	ΔIEP>	OMENO					1		1 5.20	C.S.	100.0	100.0	99.3	98.2	
	IPASS	NG (%)	N.CHANGON	1111 11	-311/11/6	Sas		121211	1 march	2000au		-Alifonnes			4
		KOKKOMETPIKH ANAAYZH FAAQON / PARTICI E-SIZE ANALYSIS OF SOULS													
		1-11-11	11023469696 11035469696		COTTON C	2244		151(#11) (151(#11)			Constantino Constantino			<u></u>	
		o 200				0 40			0 10	04	6	4	112	12	
100			ितिनि				THE	1.4.1411	1	-7	विवनगण	1 1	1		
														144	
80			1218182		3////2				10 20A					111	
			1209									1 1			
(%			3000		3000			12/3/			2 1 3				
2 960														111	
ASS										i				111	
						물건물	E		<u></u>	1			1 1		
TAG			ENE			크레	E					1			
CEN		1.5 . 6			2000		SEE			30					
<u>لَمْ يَ</u>)				- 11000		TE	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
1020															
–						「次日	13-1			31				i ii	
U	001				ΕΤΡΟΣ Κ	οκκΩΝ	/ DIAM	ETER O	F SOIL P	ARTIC	CLES (mm)				di se se se se se se se se se se se se se
		0.1													
	A	ΡΓΙΛΟΣ CLAY &	& IAYE SILT		ЛЕПТН		MESH		XON	APH	AENTO		XONA	POI	71801
		98.2	2	1991	1		MEL		-	GE	-		-	JE	
	-	10-1210-14 10-1210-14	N.C. MARK					1121			F070				
-			<u> </u>		IEZ KA	ATATA:	<u>ΞΗΣ / C</u>	LASS	IFICATIO		<u>ES15</u>	2-10.10	0.1000	- 15-1	
OPIA ATTERBERG ATTERBERG LIMITS CONTENT WET							EIΔIKO BAPOΣ SPEC. GRAV		ΠΟΣΟΣΤΟ ΟΡΓΑΝΙΚΩΝ ΟΥΣΙ ΟΡΓΑΝΙΚ ΜΑΤΤΕΡ		2N H	(ATATAE	Η		
LL %	PL %	PI %	W %		γ «N/m ³	E S	Yd kN/m ³		Gs			<i></i>		AUSCS	
46	17	29	12.0		u WIII							/0		CL	
	ກກໍ ຕໍ່ແມ່ດ	11			ALCONG-	- Sala		ereit h terit h	1.2.30	ev n					
Descriptio	n of sand	d particles		strink.	5112112	200		ani (C	Ελέγξας	1

Ο Ελένξας Checked by

Description of gravel particles: Παρατηρήσεις / Remarks :

Περιγραφή χαλικιών

.

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΓΕΩΔΟΜΗ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355	ΕΚΘΕΣΗ ΔΟΚΙΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΟΡΙΟΥ ΥΔΑ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΔΕΙΚΤΗ (DETERMINATION OF LIQUID LIMIT, PLA INDEX OF SOIL ASTM D 4318 -	Αρ. Πιστ. / Cert. No. 721	
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ.	ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No.	: 598 / 1045 / 1451	
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤ	ΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No.	: 12
ΗΜΕΡ. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAM	PLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No.	: Δ11
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING:	20-21/7/2017	BAΘOΣ / DEPTH (m)	: 22.30-22.60
EKTEΛEΣΘΗKE AΠΟ / TESTED BY: B. Bd	κρου	ЕЛЕГХӨНКЕ АПО / СНЕСКЕ	D BY: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ /	X REAATH / CUSTOM	R	
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή άργι	λος		
	OP		Ο ΠΛΑΣΤΙΚΟΤΗΤΑΣ

			OPIO YΔAPOTHTAΣ Liquid Limit Determination			OPIO ΠΛΑΣΤΙΚΟΤΗΤΑΣ Plastic Limit Determination		
Αριθμός κάψας / Container No.	1	444	333	415	373	325	5-Edit	
Αριθμός κτύπων / No. of blows N	1	29	24	18		020219	STAN .	
Βάρος υγρού δείγματος + κάψας / Mass of moist soil + container M1	gr	52.08	28.64	29.35	50.57	27.31	E	
Βάρος ξηρού δείγματος + κάψας / Mass of dry soil + container M_2	gr	49.19	25.60	26.13	49.48	26.14		
Βάρος κάψας / Mass of container M ₃	gr	42.79	19.01	19.33	42.95	19.28	E-TAN	
Περιεχόμενη υγρασία / Water content w=((M ₁ -M ₂)/(M ₂ -M ₃))x100) %	45.16	46.13	47.35	16.69	17.06	SE SAN	

: 100 % Percent of soil particles passing No 4

Διερχόμενο ποσοστό από το κόσκινο Νο 4

Διάγραμμα Πλαστικότητας Casagrande

.5

Αεροξηραμένο Air-dried

Λεπτομέρειες προετοιμασίας δείγματος / Details of specimen preparation:

Χρήση χειροκίνητης συσκευής Ορίου Υδαρότητας με μεταλλικό όργανο χάραξης.

X Wet Μέθοδος απομάκρυνσης υλικού > 425μm (No40) / Method of removing particles > 425μm (No40):

Ξηρό Oven-dried

Κατά τον προσδιορισμό του Ορίου Πλαστικότητας το δείγμα κυλινδρώνεται με το χέρι

Ο Ελέγξας Checked by

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ ∆-06-EN-35

Παρατηρήσεις / Remarks:

Εξοπλισμός:

 Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο ΣΥΣΤΗΜΑ ΠΟΙΟΤΗΤΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Παρ. Διοδώρου 160, Τ.Κ. 26443, Πάτρα Τηλ.: 2610438495, Φαξ: 2610438355

ΕΚΘΕΣΗ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH) ASTM D2166 / D2166M-16

	rp. mort y cert no v z i
ΕΡΓΟ / PROJECT: ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ	HΣ ΚΩΔ. ΕΡΓΑΣΤΗΡΙΟΥ LABORATORY No. 598 / 1045 / 1452
ΕΡΓΟΔΟΤΗΣ / CLIENT: ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΓΕΩΤΡΗΣΗ / BORING No. : Γ2
HMEP. ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ / DATE OF SAMPLING: 14/7/2017	ΔΕΙΓΜΑ / SAMPLE No. : Δ11
HMEP. ΕΚΤΕΛΕΣΗΣ / DATE OF TESTING: 20/7/2017	ΒΑΘΟΣ / DEPTH (m) : 22.30-22.60
ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / TESTED BY: Α. Σπυρόπουλο	ΕΛΕΓΧΘΗΚΕ ΑΠΟ / CHECKED BY: Α. Σπυρόπουλο
Η ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΕΚΤΕΛΕΣΘΗΚΕ ΑΠΟ / SAMPLING BY: ΕΡΓΑΣΤΗΡΙΟ / LA	B x NEAATH / CUSTOMER
ΠΕΡΙΓΡΑΦΗ / DESCRIPTION: Τεφρή ἀργιλος	ΤΟΠΟΘΕΣΙΑ / LOCATION : ΚΑΠΑΝΔΡΙΤΙ

Στοιχεία Δοκιμίο	u / :	Specimen	info
Βάρος / Weight	В	gr	1273.78
Ύψος / Height	Н	cm	15.91
Διάμετρος / Diameter	D	cm	6.71
Επιφάνεια / Area	Α	cm ²	35.34
Ογκος / Volume	V	cm ³	562.27
Ρυθμός παραμόρφωσης Average rate of strain		%/min	1.4
Κατάταξη U.S.C.S. (Group	sym	ibol)	CL

Υγρασία /	Water con	tent
Αριθμός κάψας / Ο	an No.	466
m _{υγρ} + m _κ	gr	147.31
m _ξ + m _κ	gr	135.95
m _κ	gr	41.55
m _{υδ}	gr	11.36
m _ε	gr	94.40
$m_{u\delta} / m_{f} = w$	%	12.0

ΔΙΑΓΡΑΜΜΑ ΤΑΣΗΣ - ΠΑΡΑΜΟΡΦΩΣΗΣ STRESS - STRAIN GRAPH

qu= 3135 kPa

O Ελέγξας Checked by

Υγρό φαινόμενο Βάρος (Wet Unit Weight)	Ξηρό φαινόμενο Βάρος (Dry Unit Weight)	Ειδικό Βάρος (Specific gravity)	Βαθμός Κορεσμού (Degree of Saturation)	Αντοχή σε Ανεμπόδιστη Θλίψη (Unconfined compressive strength)	Παραμόρφωση κατά τη θραύση (Strain at failure)
Y (kN/m ³)	Y₀ (kN/m³)	Gs	S (%)	q _u (kPa)	ε (%)
22.20	19.82			3135	3.5

Παρατηρήσεις / Remarks:

Το Εργαστήριο τελεί υπό την εποπτεία της ΓΓΔΕ/ΚΕΔΕ

Τα αποτελέσματα αφορούν το συγκεκριμένο δείγμα που εξετάστηκε στο εργαστήριο

ΠΑΡΑΡΤΗΜΑ Γ

ΦΩΤΟΓΡΑΦΙΚΗ ΑΠΟΤΥΠΩΣΗ ΔΕΙΓΜΑΤΩΝ ΓΕΩΤΡΗΣΕΩΝ

Γεώτρηση Γ 1

Γεώτρηση Γ 1, βάθος 0.00m – 5.00m

ΓΕΩΛΟΜΗ Μ.Ε.Π.Ε.	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ				
ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ	ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ -				
& ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ	ΚΑΠΑΝΔΡΙΤΙ				
THΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ–1			

Γεώτρηση Γ 1, βάθος 5.00m – 10.00m

Γεώτρηση Γ 1, βάθος 10.00m – 15.00m

ΓΕΩΔΟΜΗ Μ.Ε.Π.Ε. ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ & ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΑΡΟΔΟΣ ΔΙΟΔΩΡΟΥ 160 Τ.Κ. 26443 ΠΑΤΡΑ ΤΗΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ		
	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ–2	

Γεώτρηση Γ 1, βάθος 15.00m – 17.00m

ΓΕΩΔΟΜΗ Μ.Ε.Π.Ε. ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ & ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΑΡΟΔΟΣ ΔΙΟΔΩΡΟΥ 160 Τ.Κ. 26443 ΠΑΤΡΑ ΤΗΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ		
	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ-3	

Γεώτρηση Γ 2

Γεώτρηση Γ 2, βάθος 0.00m – 5.00m

ΓΕΩΔΟΜΗ Μ.Ε.Π.Ε. ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ & ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΑΡΟΔΟΣ ΔΙΟΔΩΡΟΥ 160 Τ.Κ. 26443 ΠΑΤΡΑ ΤΗΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ		
	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ-4	

Γεώτρηση Γ 2, βάθος 5.00m – 10.00m

Γεώτρηση Γ 2, βάθος 10.00m – 15.00m

ΓΕΩΔΟΜΗ Μ.Ε.Π.Ε. ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ & ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΑΡΟΔΟΣ ΔΙΟΔΩΡΟΥ 160 Τ.Κ. 26443 ΠΑΤΡΑ ΤΗΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ		
	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ–5	

Γεώτρηση Γ 2, βάθος 15.00m – 20.00m

Γεώτρηση Γ 2, βάθος 20.00m – 23.00m

ΓΕΩΔΟΜΗ Μ.Ε.Π.Ε. ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ & ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΑΡΟΔΟΣ ΔΙΟΔΩΡΟΥ 160 Τ.Κ. 26443 ΠΑΤΡΑ ΤΗΛ. 2610438495 ΦΑΞ 2610438355	ΕΡΓΟ : ΓΕΩΤΕΧΝΙΚΗ ΕΡΕΥΝΑ & ΜΕΛΕΤΗ ΚΑΤΕΠΕΙΓΟΥΣΑΣ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΚΑΤΟΛΙΣΘΗΣΗΣ ΕΠ. ΟΔΟΥ ΑΓ. ΓΕΩΡΓΙΟΣ - ΚΑΠΑΝΔΡΙΤΙ		
	ΕΡΓΟΔΟΤΗΣ : ΣΙΓΜΑ ΜΕΛΕΤΩΝ ΑΕ	ΣΕΛΙΔΑ : Γ-6	

ΠΑΡΑΡΤΗΜΑ Δ

ΕΛΕΓΧΟΙ ΕΥΣΤΑΘΕΙΑΣ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΙΧΩΝ - ΠΑΣΣΑΛΩΝ

ΡLAXIS ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ - ΘΕΣΗ : ΚΕΦΑΛΟΝΙΑ -

User: Κ. Παντελόπουλος, πολιτικός μηχανικός

Title:File: 2017_KEFALONIA_WALL_R4_BACK

Εργο	ΑΠΟΚΑΤΑΣΤΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΔΙΑΤΟΜΗΣ
Περιγραφή	ΔΙΑΤΟΜΗ 2
	Ανάστροφη ανάλυση

2017_KEFALONIA_WALL_R4_BACK

1.1.1 Input nodes plot	5
1.1.2 Input nodes	6
1.1.3.1 Calculation results, <phase 1=""> (1/3), Materials plot</phase>	7
1.1.3.2 Calculation results, Initial phase (0/19), Materials plot	8
1.1.3.3 Calculation results, <phase 2=""> (2/119), Materials plot</phase>	8
1.1.4.1.1.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)	9
1.1.4.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)	10
1.1.4.1.1.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)	11
1.1.4.1.2 Materials - Soil and interfaces - Linear elastic	13
1.1.5.1 Calculation information	14
1.1.5.2 Calculation information	15
1.1.5.3 Calculation information	16
2.1.1.1.1 Calculation results, <phase 1=""> (1/3), Incremental displacements Δu </phase>	17
2.1.1.1.2 Calculation results, Initial phase (0/19), Incremental displacements Δu	17
2.1.1.1.3 Calculation results, <phase 2=""> (2/119), Incremental displacements Au </phase>	

2017_KEFALONIA_WALL_R4_BACK

1.1.1 Input nodes plot

1.1.2 Input nodes

Index	Node	X [m]	Y [m]
0	479	0,000	0,000
1	5391	50,000	33,000
2	3414	50,000	0,000
3	161	0,000	15,000
4	99	2,500	17,000
5	2424	24,000	26,500
6	2431	24,000	27,500
7	2473	25,500	28,000
8	3459	33,500	33,000
9	1615	15,500	23,000
10	1919	18,000	25,000
11	1725	19,000	26,500
12	4869	50,000	19,500
13	2319	21,500	18,000
14	4995	50,000	23,000
15	2633	21,500	21,500
16	937	9,290	20,134
17	5225	50,000	28,500
18	2335	21,500	23,500
19	1541	14,265	22,430
20	2492	24,500	26,500
21	2454	24,500	27,667
22	2396	23,500	26,500
23	1990	20,500	26,500
24	2303	20,500	23,352
25	1929	18,333	25,500
26	2701	24,000	25,500
27	2727	25,000	25,500
28	1376	18,000	26,500
29	1663	17,500	24,600
30	2129	19,000	23,130
31	2113	19,000	17,868
32	2293	19,000	21,220
33	2206	22,500	26,500

Index	Node	X [m]	Y [m]
34	1883	16,000	23,500
35	969	10,250	21,750
36	509	7,155	19,853

1.1.3.1 Calculation results, <Phase 1> (1/3), Materials plot

1.1.3.2 Calculation results, Initial phase (0/19), Materials plot

1.1.3.3 Calculation results, <Phase 2> (2/119), Materials plot

Materials plot	

1.1.4.1.1.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)

Identification		GU-I	GU-IIa	GU-III	GU-IIb	EPIXWSEIS
Identification number		1	2	3	4	5
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γunsat	kN/m ³	20,00	19,00	19,50	19,00	21,00
γ_{sat}	kN/m ³	20,00	19,00	19,50	19,00	21,00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0.000
emax		999.0	999.0	999.0	999.0	999.0
Ravleigh a		0.000	0.000	0.000	0.000	0.000
Ravleigh ß		0.000	0.000	0.000	0.000	0.000
E	kN/m ²	35.00E3	24.50E3	15.00E3	55.00E3	50.00E3
v (nu)		0.2500	0.2500	0.2500	0.2500	0.2500
G	kN/m ²	14 00E3	9800	6000	22 00E3	20.00E3
Fut	kN/m^2	42 00F3	29.40F3	18 00F3	66 00E3	60,00E3
Conf	kN/m^2	5.000	25,00	15.00	50.00	5.000
(n (nhi)	0	35.00	25,00	32.00	26.00	38.00
ψ (pii) w (psi)	0	0.000	0.000	0.000	0.000	0.000
v (psi)	m/s	82.83	71.10	54.91	106.5	96.61
V s	m/s	142.5	122.1	05.11	194.5	167.2
v _p Set to default	111/8	143,5	123,1	95,11	104,5	107,5
values	2	Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Manual with	Manual with	Manual with	Manual with	Manual with
P.		0.6700	0.6700		0.6700	
R		0,6700	0.6700	0,6700	0,6700	0,6700
Consider gap		0,0700	0,0700	0,0700	0,0700	0,0700
closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
K _{0,x}		0,4264	0,5774	0,4701	0,5616	0,3843
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
kx	m/day	0,000	0,000	0,000	0,000	0,000
ky	m/day	0,000	0,000	0,000	0,000	0,000
-Wunsat	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
einit		0,5000	0,5000	0,5000	0,5000	0,5000
Ck		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)

Identification		INTERFACE	KROKALOP AGH	GU-I - DA-3	GU-IIa - DA-3	GU-III - DA-3
Identification number		8	9	10	11	12
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γ_{unsat}	kN/m ³	0,000	21,00	20,00	19,00	19,50
γ_{sat}	kN/m ³	0,000	21,00	20,00	19,00	19,50
Dilatancy cut-off		No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh a		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
E	kN/m ²	10,00E3	30,00E3	35,00E3	24,50E3	15,00E3
v (nu)		0,3000	0,2500	0,2500	0,2500	0,2500
G	kN/m ²	3846	12,00E3	14,00E3	9800	6000
E _{oed}	kN/m ²	13,46E3	36,00E3	42,00E3	29,40E3	18,00E3
C _{ref}	kN/m ²	50,00	80,00	4,000	20,00	12,00
φ (phi)	0	38,00	30,00	29,26	20,46	26,56
ψ (psi)	0	0,000	0,000	0,000	0,000	0,000
Vs	m/s	0,000	74,83	82,83	71,10	54,91
V _p	m/s	0,000	129,6	143,5	123,1	95,11
Set to default values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Manual with residual strength	Manual with residual strength	Manual with residual strength
R _{inter}		1,000	1,000	0,6700	0,6700	0,6700
R _{inter, residual}		1,000	1,000	0,6700	0,6700	0,6700
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Manual	Manual	Manual
K _{0,x}		0,3843	0,5000	0,4264	0,5774	0,4701
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000	0,000
ky	m/day	0,000	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.1.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
Identification number		13	14	17	18
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments					
γ _{unsat}	kN/m ³	19,00	21,00	0,000	21,00
γ_{sat}	kN/m ³	19,00	21,00	0,000	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000
Е	kN/m ²	55,00E3	50,00E3	10,00E3	30,00E3
v (nu)		0,2500	0,2500	0,3000	0,2500
G	kN/m ²	22,00E3	20,00E3	3846	12,00E3
Eoed	kN/m ²	66,00E3	60,00E3	13,46E3	36,00E3
C _{ref}	kN/m ²	40,00	4,000	50,00	64,00
φ (phi)	0	21,32	32,01	38,00	24,79
ψ (psi)	0	0,000	0,000	0,000	0,000
Vs	m/s	106,5	96,61	0,000	74,83
V _p	m/s	184,5	167,3	0,000	129,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
C _{inc}	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000
Strength		Manual with residual strength	Manual with residual strength	Rigid	Rigid
R _{inter}		0,6700	0,6700	1,000	1,000
R _{inter, residual}		0,6700	0,6700	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Manual	Manual	Automatic	Manual
K _{0,x}		0,5616	0,3843	0,3843	0,5000
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.2 Materials - Soil and interfaces - Linear elastic

Identification		WALL	SYRMATOKYBWTI A	WALL - DA-3	SYRMATOKYBWTIA - DA-3
Identification number		6	7	15	16
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments		_	_	_	_
γunsat	kN/m ³	25,00	21,00	25,00	21,00
γ_{sat}	kN/m ³	25,00	21,00	25,00	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000
E	kN/m ²	30,00E6	120,0E3	30,00E6	120,0E3
v (nu)		0,3000	0,000	0,3000	0,000
G	kN/m ²	11,54E6	60,00E3	11,54E6	60,00E3
E _{oed}	kN/m ²	40,38E6	120,0E3	40,38E6	120,0E3
Vs	m/s	2127	167,3	2127	167,3
\mathbf{V}_{p}	m/s	3979	236,6	3979	236,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Rigid	Rigid
R _{inter}		1,000	1,000	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic
K _{0,x}		1,000	0,5774	1,000	0,5774
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
ky	m/day	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000

1.1.5.1 Calculation information

Calculation information				
Step info				
Phase	<phase 1=""></phase>			
Step	3 of 100			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,5150			
Relative stiffness	0,1782			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	$\mathbf{M}_{\mathrm{Weight}}$	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,1543	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.2 Calculation information

Calculation information				
Step info				
Phase	Initial phase			
Step	19 of 100			
Calulation mode	Classical mode			
Step type	Gravity loading			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,07752			
Relative stiffness	0,6605			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M _{Weight}	0,01402	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M _{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.3 Calculation information

Calculation information				
Step info				
Phase	<phase 2=""></phase>			
Step	119 of 119			
Calulation mode	Classical mode			
Step type	Safety			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	2,000			
Relative stiffness	-3,035E-9			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	-0,4174E-3	ΣM_{sf}	1,049
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

2.1.1.1.1 Calculation results, <Phase 1> (1/3), Incremental displacements $|\Delta u|$

2.1.1.1.2 Calculation results, Initial phase (0/19), Incremental displacements $\left|\Delta u\right|$

 $SF = 1.05 \approx 1.00$

ΡLAXIS ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ - ΘΕΣΗ : ΚΕΦΑΛΟΝΙΑ -

User:	Κ. Παντελόπουλος, πολιτι	κός μηχανικός

Title:File: 2017_KEFALONIA_WALL_R4_COMB3

Έργο	ΑΠΟΚΑΤΑΣΤΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΔΙΑΤΟΜΗΣ
Περιγραφή	ΔΙΑΤΟΜΗ 2
	Σεισμικός συνδυασμός 3 (ΟΜΟΕ τ.11)

1.1.1 Input nodes plot

1.1.2 Input nodes

Index	Node	X [m]	Y [m]
0	4387	0,000	0,000
1	224	50,000	33,000
2	1678	50,000	0,000
3	5498	0,000	15,000
4	5923	2,500	17,000
5	3519	17,500	26,500
6	2571	24,000	26,500
7	2314	24,000	27,500
8	2201	25,500	28,000
9	815	33,500	33,000
10	6277	15,500	23,000
11	3867	18,000	25,000
12	3421	19,000	26,500
13	1297	50,000	19,500
14	4185	21,500	18,000
15	1107	50,000	23,000
16	3834	21,500	21,500
17	7256	9,290	20,134
18	633	50,000	28,500
19	3319	21,500	23,500
20	6871	14,265	22,430
21	2561	24,500	26,500
22	2297	24,500	27,667
23	2777	23,500	26,500
24	3255	20,500	26,500
25	3752	20,500	23,352
26	3857	18,333	25,500
27	2815	24,000	25,500
28	2751	25,000	25,500
29	3537	17,500	25,500
30	3533	18,000	26,500
31	4169	17,375	24,500
32	6629	14,544	22,559
33	3031	22,500	25,500

Index	Node	X [m]	Y [m]
34	4127	17,500	24,500
35	3947	17,500	24,600
36	3385	20,500	24,500
37	3943	19,000	24,500
38	4864	19,000	14,500
39	4116	19,000	23,130
40	4489	19,000	17,868
41	4260	19,000	21,220
42	5317	19,000	14,000
43	3303	21,000	24,500
44	3245	21,000	25,500
45	2837	22,500	26,500
46	4907	17,500	23,500
47	3483	20,000	23,500
48	4097	19,000	23,500
49	3804	20,000	24,500
50	5617	16,500	23,500
51	4921	16,500	24,500
52	5327	16,500	23,800
53	5859	16,125	23,500

1.1.3.1 Calculation results, Initial phase (0/11), Materials plot

1.1.3.2 Calculation results, <Phase 2> (2/15), Materials plot

1.1.3.3 Calculation results, <Phase 4> (4/36), Materials plot

1.1.3.4 Calculation results, <Phase 5> (5/136), Materials plot

1.1.3.5 Calculation results, <Phase 1> (1/182), Materials plot

1.1.3.6 Calculation results, <Phase 3> (3/194), Materials plot

1.1.4.1.1.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)

Identification		GU-I	GU-IIa	GU-III	GU-IIb	EPIXWSEIS
Identification number		1	2	3	4	5
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments		_				_
V.most	kN/m ³	20.00	19.00	19.50	19.00	21.00
γunsat V _{cat}	kN/m ³	20.00	19,00	19,50	19,00	21,00
Dilatancy		No	No	No	No	No
cut-off		NO	NO	NO	NO	NO
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
E	kN/m²	35,00E3	24,50E3	15,00E3	55,00E3	50,00E3
v (nu)	1 8 1 2	0,2500	0,2500	0,2500	0,2500	0,2500
G	kN/m ²	14,00E3	9800	6000	22,00E3	20,00E3
E _{oed}	kN/m ²	42,00E3	29,40E3	18,00E3	66,00E3	60,00E3
Cref	kIN/m ⁻	5,000	25,00	15,00	50,00	5,000
φ (phi)		35,00	25,00	32,00	26,00	38,00
ψ (ps1)		0,000	0,000	0,000	0,000	0,000
Vs	m/s	82,83	/1,10	54,91	106,5	96,61
V _p Set to default	m/s	143,5	123,1	95,11	184,5	167,3
values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Manual with residual strength	Manual with residual strength	Manual with residual strength	Manual with residual strength	Manual with residual strength
R _{inter}		0,6700	0,6700	0,6700	0,6700	0,6700
R _{inter, residual}		0,6700	0,6700	0,6700	0,6700	0,6700
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
K _{0,x}		0,4264	0,5774	0,4701	0,5616	0,3843
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000	0,000
ky	m/day	0,000	0,000	0,000	0,000	0,000
-Wunsat	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)

Identification		INTERFACE	KROKALOP AGH	GU-I - DA-3	GU-IIa - DA-3	GU-III - DA-3
Identification number		8	9	10	11	12
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γ_{unsat}	kN/m ³	0,000	21,00	20,00	19,00	19,50
γ_{sat}	kN/m ³	0,000	21,00	20,00	19,00	19,50
Dilatancy cut-off		No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh a		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
Е	kN/m ²	10,00E3	30,00E3	35,00E3	24,50E3	15,00E3
v (nu)		0,3000	0,2500	0,2500	0,2500	0,2500
G	kN/m ²	3846	12,00E3	14,00E3	9800	6000
E _{oed}	kN/m ²	13,46E3	36,00E3	42,00E3	29,40E3	18,00E3
c _{ref}	kN/m ²	50,00	80,00	4,000	20,00	12,00
φ (phi)	0	38,00	30,00	29,26	20,46	26,56
ψ (psi)	0	0,000	0,000	0,000	0,000	0,000
Vs	m/s	0,000	74,83	82,83	71,10	54,91
V _p	m/s	0,000	129,6	143,5	123,1	95,11
Set to default values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Manual with residual strength	Manual with residual strength	Manual with residual strength
R _{inter}		1,000	1,000	0,6700	0,6700	0,6700
Rinter, residual		1,000	1,000	0,6700	0,6700	0,6700
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Manual	Manual	Manual
$K_{0,x}$		0,3843	0,5000	0,4264	0,5774	0,4701
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000	0,000
-Ψunsat	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15
1.1.4.1.1.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
Identification number		13	14	17	18
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments					
γ_{unsat}	kN/m ³	19,00	21,00	0,000	21,00
$\gamma_{\rm sat}$	kN/m ³	19,00	21,00	0,000	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh a		0,000	0,000	0,000	0,000
Rayleigh B		0,000	0,000	0,000	0,000
Е	kN/m ²	55,00E3	50,00E3	10,00E3	30,00E3
v (nu)		0,2500	0,2500	0,3000	0,2500
G	kN/m ²	22,00E3	20,00E3	3846	12,00E3
E _{oed}	kN/m ²	66,00E3	60,00E3	13,46E3	36,00E3
$c_{\rm ref}$	kN/m ²	40,00	4,000	50,00	64,00
φ (phi)	0	21,32	32,01	38,00	24,79
ψ (psi)	0	0,000	0,000	0,000	0,000
Vs	m/s	106,5	96,61	0,000	74,83
V _p	m/s	184,5	167,3	0,000	129,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
c _{inc}	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000
Strength		Manual with residual strength	Manual with residual strength	Rigid	Rigid
R _{inter}		0,6700	0,6700	1,000	1,000
R _{inter, residual}		0,6700	0,6700	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Manual	Manual	Automatic	Manual
K _{0,x}		0,5616	0,3843	0,3843	0,5000
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-Ψunsat	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.2 Materials - Soil and interfaces - Linear elastic

Identification		WALL	SYRMATOKYBWTI A	WALL - DA-3	SYRMATOKYBWTIA - DA-3
Identification number		6	7	15	16
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments					
γunsat	kN/m ³	25,00	21,00	25,00	21,00
γ_{sat}	kN/m ³	25,00	21,00	25,00	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000
Е	kN/m ²	30,00E6	120,0E3	30,00E6	120,0E3
ν (nu)		0,3000	0,000	0,3000	0,000
G	kN/m ²	11,54E6	60,00E3	11,54E6	60,00E3
E _{oed}	kN/m ²	40,38E6	120,0E3	40,38E6	120,0E3
Vs	m/s	2127	167,3	2127	167,3
V_p	m/s	3979	236,6	3979	236,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Rigid	Rigid
R _{inter}		1,000	1,000	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic
K _{0,x}		1,000	0,5774	1,000	0,5774
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000

Identification	WALL	SYRMATOKYBWTI A	WALL - DA-3	SYRMATOKYBWTIA - DA-3
c _k	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.2 Materials - Plates -

Identification		PILE35/1.0	WALL	PILE35/1.0 - DA-3	WALL - DA-3
Identification number		1	2	3	4
Comments					
Colour					
Material type		Elastic	Elastic	Elastic	Elastic
Isotropic		Yes	Yes	Yes	Yes
End bearing		No	No	No	No
EA_1	kN/m	14,54E6	9,000E6	14,54E6	9,000E6
EA ₂	kN/m	14,54E6	9,000E6	14,54E6	9,000E6
EI	kN m²/m	62,40E3	810,0E3	62,40E3	810,0E3
d	m	0,2270	1,039	0,2270	1,039
w	kN/m/m	1,000	0,8000	1,000	0,8000
v (nu)		0,2500	0,2500	0,2500	0,2500
Rayleigh a		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000

1.1.4.3 Materials - Geogrids -

Identification		GEOGRID	GEOGRID - DA-3
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Isotropic		Yes	Yes
EA ₁	kN/m	5000	5000
EA ₂	kN/m	5000	5000

1.1.5.1 Calculation information

Calculation information				
Step info				
Phase	Initial phase			
Step	11 of 100			
Calulation mode	Classical mode			
Step type	Gravity loading			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,5914			
Relative stiffness	0,9974			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	$M_{\text{Disp}X}$	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	$\mathbf{M}_{\mathrm{Weight}}$	0,02369	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M _{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	0,9986
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _X	1335 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.2 Calculation information

Calculation information				
Step info				
Phase	<phase 2=""></phase>			
Step	15 of 100			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,5593			
Relative stiffness	0,9671			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	$M_{\rm sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,3178E-3	ΣM_{Area}	0,9937
Active proportion of stage	M _{Stage}	0,1227	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.3 Calculation information

Calculation information				
Step info				
Phase	<phase 4=""></phase>			
Step	36 of 100			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,9102			
Relative stiffness	0,1095			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	Mweight	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,04761	ΣM_{Accel}	1,000
Strength reduction factor	M_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	3139 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.4 Calculation information

Calculation information				
Step info				
Phase	<phase 5=""></phase>			
Step	136 of 136			
Calulation mode	Classical mode			
Step type	Safety			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	2,000			
Relative stiffness	7,421E-3			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M _{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	1,000
Strength reduction factor	M_{sf}	-1,994E-3	ΣM_{sf}	1,385
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	3615 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.5 Calculation information

Calculation information				
Step info				
Phase	<phase 1=""></phase>			
Step	182 of 182			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	1,000			
Relative stiffness	0,08047			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	$M_{\rm sf}$	0,000	$\Sigma M_{\rm sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	-0,06597E-3	ΣM_{Area}	0,9911
Active proportion of stage	M _{Stage}	8,771E-3	ΣM_{Stage}	0,9999
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.6 Calculation information

Calculation information				
Step info		-		
Phase	<phase 3=""></phase>			
Step	194 of 194			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,2697			
Relative stiffness	0,8398			
Design approach				
Index	0			
Name	Reference values			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	0,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	0,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M _{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	$M_{\rm sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,3756E-3	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,05967	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

2.1.1.1.1 Calculation results, Initial phase (0/11), Incremental displacements $\left|\Delta u\right|$

2.1.1.1.5 Calculation results, <Phase 1> (1/182), Incremental displacements $|\Delta u|$

2.1.1.1.2 Calculation results, <Phase 2> (2/15), Incremental displacements $|\Delta u|$

2.1.1.1.6 Calculation results, <Phase 3> (3/194), Incremental displacements $|\Delta u|$

2.1.1.1.3 Calculation results, <Phase 4> (4/36), Incremental displacements $|\Delta u|$

2.1.1.1.4 Calculation results, <Phase 5> (5/136), Incremental displacements $|\Delta u|$

SF = 1.38 > 1.10

3.1.1.1.3 Calculation results, Plate, <Phase 4> (4/36), Axial forces N

3.1.1.2.3 Calculation results, Plate, <Phase 4> (4/36), Shear forces Q

ΡLAXIS ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΟΥΣ - ΘΕΣΗ : ΚΕΦΑΛΟΝΙΑ -

User: Κ. Παντελόπουλος, πολιτικός μηχανικός

Title:File: 2017_KEFALONIA_WALL_R4_COMB6-7

Έργο	ΑΠΟΚΑΤΑΣΤΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΔΙΑΤΟΜΗΣ
Περιγραφή	ΔΙΑΤΟΜΗ 2
	Συνδυασμοί 6 & 7 (ΟΜΟΕ τ.11)

2017_KEFALONIA_WALL_R4_COMB6-7

1.1.1 Input nodes plot	5
1.1.2 Input nodes	6
1.1.3.1 Calculation results, Initial phase (0/11), Materials plot	8
1.1.3.2 Calculation results, <phase 1=""> (1/20), Materials plot</phase>	8
1.1.3.3 Calculation results, <phase 4=""> (4/120), Materials plot</phase>	9
1.1.3.4 Calculation results, <phase 2=""> (2/125), Materials plot</phase>	9
1.1.3.5 Calculation results, <phase 3=""> (3/133), Materials plot</phase>	10
1.1.3.6 Calculation results, <phase 6=""> (6/233), Materials plot</phase>	10
1.1.3.7 Calculation results, <phase 7=""> (7/255), Materials plot</phase>	11
1.1.3.8 Calculation results, <phase 5=""> (5/273), Materials plot</phase>	11
1.1.4.1.1.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)	12
1.1.4.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)	13
1.1.4.1.1.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)	14
1.1.4.1.2 Materials - Soil and interfaces - Linear elastic	16
1.1.4.2 Materials - Plates -	17
1.1.5.1 Calculation information	18
1.1.5.2 Calculation information	19
1.1.5.3 Calculation information	20
1.1.5.4 Calculation information	21
1.1.5.5 Calculation information	22
1.1.5.6 Calculation information	23
1.1.5.7 Calculation information	24
1.1.5.8 Calculation information	25
2.1.1.1.1 Calculation results, Initial phase (0/11), Incremental displacements Δu	26
2.1.1.1.2 Calculation results, <phase 1=""> (1/20), Incremental displacements Δu </phase>	26
2.1.1.1.4 Calculation results, <phase 2=""> (2/125), Incremental displacements Δu</phase>	27
2.1.1.1.5 Calculation results, <phase 3=""> (3/133), Incremental displacements Δu</phase>	27
2.1.1.1.3 Calculation results, <phase 4=""> (4/120), Incremental displacements Δu</phase>	28
2.1.1.1.8 Calculation results, <phase 5=""> (5/273), Incremental displacements Δu</phase>	28
2.1.1.1.6 Calculation results, <phase 6=""> (6/233), Incremental displacements Δu</phase>	29
2.1.1.1.7 Calculation results, <phase 7=""> (7/255), Incremental displacements Δu</phase>	29
3.1.1.1.5 Calculation results, Plate, <phase 3=""> (3/133), Axial forces N</phase>	30
3.1.1.1.8 Calculation results, Plate, <phase 5=""> (5/273), Axial forces N</phase>	30
3.1.1.2.5 Calculation results, Plate, <phase 3=""> (3/133), Shear forces Q</phase>	31
3.1.1.2.8 Calculation results, Plate, <phase 5=""> (5/273), Shear forces Q</phase>	31
3.1.1.3.5 Calculation results, Plate, <phase 3=""> (3/133), Bending moments M</phase>	32
3.1.1.3.8 Calculation results, Plate, <phase 5=""> (5/273), Bending moments M</phase>	32

2017_KEFALONIA_WALL_R4_COMB6-7

1.1.1 Input nodes plot

1.1.2 Input nodes

Index	Node	X [m]	Y [m]
0	4387	0,000	0,000
1	224	50,000	33,000
2	1678	50,000	0,000
3	5498	0,000	15,000
4	5923	2,500	17,000
5	3519	17,500	26,500
6	2571	24,000	26,500
7	2314	24,000	27,500
	2201	25,500	28,000
9	815	33,500	33,000
10	6277	15,500	23,000
11	3867	18,000	25,000
12	3421	19,000	26,500
13	1297	50,000	19,500
14	4185	21,500	18,000
15	1107	50,000	23,000
	3834	21,500	21,500
17	7256	9,290	20,134
18	633	50,000	28,500
19	3319	21,500	23,500
20	6871	14,265	22,430
21	2561	24,500	26,500
22	2297	24,500	27,667
23	2777	23,500	26,500
24	3255	20,500	26,500
25	3752	20,500	23,352
26	3857	18,333	25,500
27	2815	24,000	25,500
28	2751	25,000	25,500
29	3537	17,500	25,500
30	3533	18,000	26,500
31	4169	17,375	24,500
32	6629	14,544	22,559
33	3031	22,500	25,500

Index	Node	X [m]	Y [m]
34	4127	17,500	24,500
35	3947	17,500	24,600
36	3385	20,500	24,500
37	3943	19,000	24,500
38	4864	19,000	14,500
39	4116	19,000	23,130
40	4489	19,000	17,868
41	4260	19,000	21,220
42	5317	19,000	14,000
43	3303	21,000	24,500
44	3245	21,000	25,500
45	2837	22,500	26,500
46	4907	17,500	23,500
47	3483	20,000	23,500
48	4097	19,000	23,500
49	3804	20,000	24,500
50	5617	16,500	23,500
51	4921	16,500	24,500
52	5327	16,500	23,800
53	5859	16,125	23,500

1.1.3.1 Calculation results, Initial phase (0/11), Materials plot

1.1.3.2 Calculation results, <Phase 1> (1/20), Materials plot

1.1.3.3 Calculation results, <Phase 4> (4/120), Materials plot

1.1.3.4 Calculation results, <Phase 2> (2/125), Materials plot

1.1.3.5 Calculation results, <Phase 3> (3/133), Materials plot

1.1.3.6 Calculation results, <Phase 6> (6/233), Materials plot

1.1.3.7 Calculation results, <Phase 7> (7/255), Materials plot

1.1.3.8 Calculation results, <Phase 5> (5/273), Materials plot

1.1.4.1.1.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)

Identification		GU-I	GU-IIa	GU-III	GU-IIb	EPIXWSEIS
Identification number		1	2	3	4	5
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments		_				_
V.most	kN/m ³	20.00	19.00	19.50	19.00	21.00
γunsat V _{cat}	kN/m ³	20.00	19,00	19,50	19,00	21,00
Dilatancy		No	No	No	No	No
cut-off		NO	NO	NO	NO	NO
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
E	kN/m²	35,00E3	24,50E3	15,00E3	55,00E3	50,00E3
v (nu)	1 8 1 2	0,2500	0,2500	0,2500	0,2500	0,2500
G	kN/m ²	14,00E3	9800	6000	22,00E3	20,00E3
E _{oed}	kN/m ²	42,00E3	29,40E3	18,00E3	66,00E3	60,00E3
Cref	kIN/m ⁻	5,000	25,00	15,00	50,00	5,000
φ (phi)		35,00	25,00	32,00	26,00	38,00
ψ (ps1)		0,000	0,000	0,000	0,000	0,000
Vs	m/s	82,83	/1,10	54,91	106,5	96,61
V _p Set to default	m/s	143,5	123,1	95,11	184,5	167,3
values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Cinc	kN/m²/m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Manual with residual strength	Manual with residual strength	Manual with residual strength	Manual with residual strength	Manual with residual strength
R _{inter}		0,6700	0,6700	0,6700	0,6700	0,6700
R _{inter, residual}		0,6700	0,6700	0,6700	0,6700	0,6700
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
K _{0,x}		0,4264	0,5774	0,4701	0,5616	0,3843
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000	0,000
ky	m/day	0,000	0,000	0,000	0,000	0,000
-Wunsat	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)

Identification		INTERFACE	KROKALOP AGH	GU-I - DA-3	GU-IIa - DA-3	GU-III - DA-3
Identification number		8	9	10	11	12
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γ_{unsat}	kN/m ³	0,000	21,00	20,00	19,00	19,50
$\gamma_{\rm sat}$	kN/m ³	0,000	21,00	20,00	19,00	19,50
Dilatancy cut-off		No	No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0	999,0
Rayleigh a		0,000	0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000	0,000
E	kN/m ²	10,00E3	30,00E3	35,00E3	24,50E3	15,00E3
v (nu)		0,3000	0,2500	0,2500	0,2500	0,2500
G	kN/m ²	3846	12,00E3	14,00E3	9800	6000
E _{oed}	kN/m ²	13,46E3	36,00E3	42,00E3	29,40E3	18,00E3
c _{ref}	kN/m ²	50,00	80,00	4,000	20,00	12,00
φ (phi)	0	38,00	30,00	29,26	20,46	26,56
ψ (psi)	0	0,000	0,000	0,000	0,000	0,000
Vs	m/s	0,000	74,83	82,83	71,10	54,91
V _p	m/s	0,000	129,6	143,5	123,1	95,11
Set to default values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m ² /m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
c _{inc}	kN/m ² /m	0,000	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Manual with residual strength	Manual with residual strength	Manual with residual strength
R _{inter}		1,000	1,000	0,6700	0,6700	0,6700
R _{inter, residual}		1,000	1,000	0,6700	0,6700	0,6700
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Manual	Manual	Manual
K _{0,x}		0,3843	0,5000	0,4264	0,5774	0,4701
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.1.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
Identification number		13	14	17	18
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments					
γ _{unsat}	kN/m ³	19,00	21,00	0,000	21,00
γ_{sat}	kN/m ³	19,00	21,00	0,000	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh a		0,000	0,000	0,000	0,000
Rayleigh B		0,000	0,000	0,000	0,000
Е	kN/m ²	55,00E3	50,00E3	10,00E3	30,00E3
v (nu)		0,2500	0,2500	0,3000	0,2500
G	kN/m ²	22,00E3	20,00E3	3846	12,00E3
E _{oed}	kN/m ²	66,00E3	60,00E3	13,46E3	36,00E3
C _{ref}	kN/m ²	40,00	4,000	50,00	64,00
φ (phi)	0	21,32	32,01	38,00	24,79
ψ (psi)	0	0,000	0,000	0,000	0,000
Vs	m/s	106,5	96,61	0,000	74,83
V _p	m/s	184,5	167,3	0,000	129,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
C _{inc}	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Tension cut-off		Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0,000	0,000	0,000	0,000
Strength		Manual with residual strength	Manual with residual strength	Rigid	Rigid
R _{inter}		0,6700	0,6700	1,000	1,000
R _{inter, residual}		0,6700	0,6700	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Manual	Manual	Automatic	Manual
K _{0,x}		0,5616	0,3843	0,3843	0,5000
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse

Identification		GU-IIb - DA-3	EPIXWSEIS - DA-3	INTERFACE - DA-3	KROKALOPAGH - DA-3
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-Ψunsat	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000
c _k		1,000E15	1,000E15	1,000E15	1,000E15

1.1.4.1.2 Materials - Soil and interfaces - Linear elastic

Identification		WALL	SYRMATOKYBWTI A	WALL - DA-3	SYRMATOKYBWTIA - DA-3
Identification number		6	7	15	16
Drainage type		Drained	Drained	Drained	Drained
Colour					
Comments					
γunsat	kN/m ³	25,00	21,00	25,00	21,00
γ_{sat}	kN/m ³	25,00	21,00	25,00	21,00
Dilatancy cut-off		No	No	No	No
e _{init}		0,5000	0,5000	0,5000	0,5000
e _{min}		0,000	0,000	0,000	0,000
e _{max}		999,0	999,0	999,0	999,0
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000
Е	kN/m ²	30,00E6	120,0E3	30,00E6	120,0E3
ν (nu)		0,3000	0,000	0,3000	0,000
G	kN/m ²	11,54E6	60,00E3	11,54E6	60,00E3
E _{oed}	kN/m ²	40,38E6	120,0E3	40,38E6	120,0E3
Vs	m/s	2127	167,3	2127	167,3
V _p	m/s	3979	236,6	3979	236,6
Set to default values		Yes	Yes	Yes	Yes
Einc	kN/m²/m	0,000	0,000	0,000	0,000
y _{ref}	m	0,000	0,000	0,000	0,000
Strength		Rigid	Rigid	Rigid	Rigid
R _{inter}		1,000	1,000	1,000	1,000
Consider gap closure		Yes	Yes	Yes	Yes
δ_{inter}		0,000	0,000	0,000	0,000
K ₀ determination		Automatic	Automatic	Automatic	Automatic
K _{0,x}		1,000	0,5774	1,000	0,5774
Data set		Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse
$< 2 \ \mu m$	%	10,00	10,00	10,00	10,00
2 μm - 50 μm	%	13,00	13,00	13,00	13,00
50 µm - 2 mm	%	77,00	77,00	77,00	77,00
Set to default values		No	No	No	No
k _x	m/day	0,000	0,000	0,000	0,000
k _y	m/day	0,000	0,000	0,000	0,000
-Ψ _{unsat}	m	10,00E3	10,00E3	10,00E3	10,00E3
e _{init}		0,5000	0,5000	0,5000	0,5000

1.1.4.2 Materials - Plates -

Identification		PILE35/1.0	WALL	PILE35/1.0 - DA-3	WALL - DA-3
Identification number		1	2	3	4
Comments					
Colour					
Material type		Elastic	Elastic	Elastic	Elastic
Isotropic		Yes	Yes	Yes	Yes
End bearing		No	No	No	No
EA_1	kN/m	14,54E6	9,000E6	14,54E6	9,000E6
EA ₂	kN/m	14,54E6	9,000E6	14,54E6	9,000E6
EI	kN m²/m	62,40E3	67,50E3	62,40E3	67,50E3
d	m	0,2270	0,3000	0,2270	0,3000
w	kN/m/m	1,000	0,8000	1,000	0,8000
ν (nu)		0,2500	0,2500	0,2500	0,2500
Rayleigh α		0,000	0,000	0,000	0,000
Rayleigh β		0,000	0,000	0,000	0,000

1.1.5.1 Calculation information

Calculation information				
Step info				
Phase	Initial phase			
Step	11 of 100			
Calulation mode	Classical mode			
Step type	Gravity loading			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,1900			
Relative stiffness	0,8384			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M _{Weight}	0,02952	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	0,000	$\Sigma M_{\rm sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	0,9986
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.2 Calculation information

Calculation information				
Step info				
Phase	<phase 1=""></phase>			
Step	20 of 100			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,8309			
Relative stiffness	0,04501			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	-0,1953E-3	ΣM_{Area}	0,9911
Active proportion of stage	M _{Stage}	0,01919	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			
1.1.5.3 Calculation information

Calculation information				
Step info				
Phase	<phase 4=""></phase>			
Step	120 of 120			
Calulation mode	Classical mode			
Step type	Safety			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	2,000			
Relative stiffness	9,355E-9			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M _{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	0,09075E-3	ΣM_{sf}	1,627
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _X	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.4 Calculation information

Calculation information				
Step info				
Phase	<phase 2=""></phase>			
Step	125 of 125			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,5133			
Relative stiffness	0,9378			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	0,000	$\Sigma M_{\rm sf}$	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,5472E-3	ΣM_{Area}	0,9937
Active proportion of stage	M _{Stage}	0,1939	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.5 Calculation information

Calculation information				
Step info				
Phase	<phase 3=""></phase>			
Step	133 of 133			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	1,406			
Relative stiffness	0,5684			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	$M_{\rm sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	1,579E-3	ΣM _{Area}	1,000
Active proportion of stage	M _{Stage}	0,1989	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.6 Calculation information

Calculation information				
Step info				
Phase	<phase 6=""></phase>			
Step	233 of 233			
Calulation mode	Classical mode			
Step type	Safety			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	1,000			
Relative stiffness	0,1569E-3			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	-0,1601E-3	ΣM_{sf}	1,352
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.7 Calculation information

Calculation information				
Step info				
Phase	<phase 7=""></phase>			
Step	255 of 255			
Calulation mode	Classical mode			
Step type	Safety			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,5000			
Relative stiffness	0,1287E-3			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M _{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M _{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M_{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	M_{sf}	-0,04763	$\Sigma M_{\rm sf}$	1,059
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,000	ΣM_{Area}	0,9911
Active proportion of stage	M _{Stage}	0,000	ΣM_{Stage}	0,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

1.1.5.8 Calculation information

Calculation information				
Step info				
Phase	<phase 5=""></phase>			
Step	273 of 273			
Calulation mode	Classical mode			
Step type	Plastic			
Updated mesh	False			
Solver type	Classic			
Kernel type	32 bit			
Extrapolation factor	0,4597			
Relative stiffness	0,3401			
Design approach				
Index	1			
Name	DA-3			
Multipliers				
Prescribed displacements X	M _{DispX}	0,000	ΣM_{DispX}	1,000
Prescribed displacements Y	M_{DispY}	0,000	ΣM_{DispY}	1,000
Load system A	M_{LoadA}	0,000	ΣM_{LoadA}	1,000
Load system B	M_{LoadB}	0,000	ΣM_{LoadB}	1,000
Soil weight	M _{Weight}	0,000	ΣM_{Weight}	1,000
Acceleration	M _{Accel}	0,000	ΣM_{Accel}	0,000
Strength reduction factor	$M_{\rm sf}$	0,000	ΣM_{sf}	1,000
Time	Increment	0,000	End time	0,000
Staged construction				
Active proportion total area	M _{Area}	0,2150E-3	ΣM_{Area}	1,000
Active proportion of stage	M _{Stage}	0,03415	ΣM_{Stage}	1,000
Forces				
F _x	0,000 kN/m			
F _Y	0,000 kN/m			
Consolidation				
Realised P _{Excess,Max}	0,000 kN/m ²			

2.1.1.1.1 Calculation results, Initial phase (0/11), Incremental displacements $\left|\Delta u\right|$

2.1.1.1.2 Calculation results, <Phase 1> (1/20), Incremental displacements $|\Delta u|$

2.1.1.1.4 Calculation results, <Phase 2> (2/125), Incremental displacements $|\Delta u|$

2.1.1.1.5 Calculation results, <Phase 3> (3/133), Incremental displacements $|\Delta u|$

SF = 1.63 > 1.40

2.1.1.1.8 Calculation results, <Phase 5> (5/273), Incremental displacements $|\Delta u|$

2.1.1.1.6 Calculation results, <Phase 6> (6/233), Incremental displacements $|\Delta u|$

2.1.1.1.7 Calculation results, <Phase 7> (7/255), Incremental displacements $|\Delta u|$

SF = 1.05 > 1.00

3.1.1.1.5 Calculation results, Plate, <Phase 3> (3/133), Axial forces N

3.1.1.1.8 Calculation results, Plate, <Phase 5> (5/273), Axial forces N

3.1.1.2.5 Calculation results, Plate, <Phase 3> (3/133), Shear forces Q

3.1.1.2.8 Calculation results, Plate, <Phase 5> (5/273), Shear forces Q

3.1.1.3.8 Calculation results, Plate, <Phase 5> (5/273), Bending moments M

Μελέτη τοίχου ανιστήριξης

Σύμφωνα με τους Ευρωκώδικες

ΚΕΦΑΛΟΝΙΑ ΤΟΙΧΟΣ ΑΝΤΙΣΤΗΡΙΞΗΣ

Ο Μηχανικός

Σχέδιο τοίχου αντιστήριξης

Δεδομένα τοίχου αντιστήριξης

1. Γεωμετρικά Χαρακτηριστικά τοίχου.

Υψος τοίχου αντιστήριξης	H =	2,60 [m]
Πάχος πέλματος πεδίλου εμπρός	D1 =	0,45 [m]
Πάχος πέλματος πεδίλου πίσω	D2 =	0,45 [m]
Υψομετ. διαφορά άκρων πεδίλου	D3 =	0,00 [m]
Ύψος χαλινού	D4 =	1,00 [m]
Πάχος χαλινού	D5 =	0,60 [m]
Υψος επίχωσης εμπρός	Ηεδ =	0,00 [m]
Μήκος πίσω πέλματος	S1 =	3,00 [m]
Μήκος	S2 =	0,10 [m]
Πλάτος στέψης	S3 =	0,30 [m]
Μήκος	S4 =	0,00 [m]
Μήκος εμπρός πέλματος	S5 =	0,00 [m]
Γωνία κλίσης παρειάς γαιών-τοίχου	ψ =	87,34 [°]
Γωνία κλίσης θεμελίου	a =	0,00 [°]

2. Εδαφικά χαρακτηριστικά επίχωσης.

Γωνία διατμητικής αντοχής επίχωσης	φd-επ =	32,00 [°]
Γωνία τριβής τοίχου-επίχωσης	δd-επ =	15,00 [°]
Μοναδιαίο βάρος επίχωσης	γ-επ =	21,00 [kN/m3]
Γωνία κλίσης πρανούς	β =	0,00 [°]
Συντελ. υπολογισμού παθητικής ώθησης λ*kp	λ =	0,30

3. Στοιχεία εδάφους θεμελίωσης.

Τρόπος ανάλυσης γεωτεχνικών οριακών καταστάσεων [GEO]	= DA2* EC7(B.6.2.2)	
Γωνία τριβής στη βάση του θεμελίου	δ =	38,00 [°]
Επιτρεπόμενη τάση εδάφους	σεπ =	275,00 [kN/m²]

4. Επιβαλλόμενα Φορτία

Μόνιμο φορτίο πρανούς επίχωσης	gп =	0,00 [kN/m]
Κινητό φορτίο πρανούς επίχωσης	qп =	20,00 [kN/m]
Μόνιμο συγκεντρωμένο στέψης τοίχου	Gσ =	0,00 [kN]
Κινητό συγκεντρωμένο στέψης τοίχου	Qo =	0,00 [kN]
Μόνιμο φορτίο πόδα (εμπρός)	gε =	0,00 [kN/m]
Κινητό φορτίο πόδα (εμπρός)	ac =	0,00 [kN/m]

Όλα τα φορτία και τα εντατικά μεγέθη δίδονται ανά μέτρο μήκους

5. Επιμέρους συντελεστές δράσεων και αντιστάσεων

Μόνιμα φορτία	γG =	1,35
Κινητά φορτία	ýQ =	1,50
Φέρουσας Ικανότητας (στατικά φορτία)	γRV =	1,40
Φέρουσας Ικανότητας (σεισμικά φορτία)	γRV =	1,00
Ολίσθησης (στατικά φορτία)	γRH =	1,10
Ολίσθησης (σεισμικά φορτία)	yRH =	1,00

6. Υλικά κατασκευής - Γενικά στοιχεία

Ποιότητα Σκυροδέματος	=	C25/30
Χαρακτηριστική αντοχή Σκυροδέματος	Fck =	25,0 [MPa]
Συντελεστής ασφαλείας σκυρόδεματος	γc =	1,50
Ποιότητα Χάλυβα	=	B500C
Χαρακτηριστική αντοχή Χάλυβα	Fyk =	500,0 [MPa]
Συντελεστής ασφαλείας χάλυβα	γs =	1,15

7. Σεισμικά χαρακτηριστικά

Σεισμική ζώνη	=	Z3
Εδαφική επιτάχυνση οριζόντια ag=[γΙ*αgR]	ag =	0,36g
Εδαφική επιτάχυνση κατακόρυφα [avg/ag]	$\overline{\lambda} =$	0,90
Μειωτικός συντελεστής συμπερ. τοίχου	r =	1,50
Συντελεστής εδάφους [ΕC8-1 πιν. 3.2]	S =	1,20
Σεισμικός συντελεστής (οριζόντια)	kH =	0,288
Σεισμικός συντελεστής (κατακόρυφα)	kV =	0,144
Γωνία κλίσης θ(ΚΑΤΩ ΣΕΙΣΜΟΣ)	θΑ =	14,130 [°]
Γωνία κλίσης θ(ΑΝΩ ΣΕΙΣΜΟΣ)	θB =	18,595 [°]

8. Κανονισμοί

Για την επίλυση χρησιμοποιούνται οι παρακάτω κανονισμοί: ΕΥΡΩΚΩΔΙΚΑΣ 0, ΕΥΡΩΚΩΔΙΚΑΣ 2, ΕΥΡΩΚΩΔΙΚΑΣ 7, ΕΥΡΩΚΩΔΙΚΑΣ 8 Λαμβάνονται υπόψιν τα πρόσθετα σεισμικά φορτία, με βάση τον ΕΥΡΩΚΩΔΙΚΑ 8 Οι συνδυασμοί φορτίσεων όπως ορίζονται από τους τους παραπάνω κανονισμούς

Οι συντελεστές ασφαλείας όπως ορίζονται από τους παραπάνω κανονισμούς

Στατική φόρτιση

Παθητική ώθηση στον τοίχο από Coulomb

Συντ. υπολογισμού παθ. ώθησης	kPe =	3,25
Γαίες τοίχου εμπρός	FpS =	71,85 [kN]
Από μόνιμο πόδα (εμπρός)	Fpg =	0,00 [kN]
Από κινητό πόδα (εμπρός)	Fpq =	0,00 [kN]
Συνολική παθητική ώθηση	Fp =	71,85 [kN]

Στην κατακόρυφη παρειά Α-Α [EQU, GEO]

Κατακόρυφα φορτία				
Ιδιο Βάρος τοίχου	W	=	72,06	[kN]
Ιδιο Βάρος γαιών	S	=	137,71	[kN]
Μόνιμο φορτίο πρανούς επίχωσης	дп	=	0,00	[kN]
Κινητό φορτίο πρανούς επίχωσης	qп	=	62,00	[kN]
Συντελεστής Κα		=	0,307	
Συντελεστής ΚαΗ		=	0,307	
Οριζόντια συνιστώσα λόγω ενεργητικής ώθησης				
Λόγω γαιών	Hs	=	41,81	[kN]
Λόγω μόνιμου φορτίου πρανούς	Ндп	=	0,00	[kN]
Λόγω κινητού φορτίου πρανούς	Ндп	=	22,12	[kN]
Συνολική ενεργητική ώθηση		=	89,63	[kN]
Κατακόρυφη συνιστώσα λόγω ενεργητικής ώθησης				
Λόγω γαιών	Vs	=	0,00	[kN]
Λόγω μόνιμου φορτίου πρανούς	Vgп	=	0,00	[kN]
Λόγω κινητού φορτίου πρανούς	Vqп	=	0,00	[kN]

Ροπές ανατροπής κ' ευστάθειας.

Ροπές ανατροπής		
Λόγω ώθησης γαιών	MHs =	8,36 [kNm]
Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	MHgn =	0,00 [kNm]
Λόγω ώθησης γαιών από κινητό φορτίο πρανούς	MHqn =	17,70 [kNm]
Ροπές ευστάθειας		
Ροπή λόγω ίδιου βάρους τοίχου	Mw =	114,84 [kNm]
Ροπή λόγω ίδιου βάρους γαιών	Ms =	258,18 [kNm]
Λόγω ώθησης γαιών (κατακόρυφα)	Mvs =	0,00 [kNm]
Λόγω ώθησης μόνιμου φορτίου πρανούς (κατακόρυφα)	Mvgn =	0,00 [kNm]
Λόγω ώθησης κινητού φορτίου πρανούς (κατακόρυφα)	Mvqn =	0,00 [kNm]
Λόγω παθητικής ώθησης εμπρός	MPas =	-37,12 [kNm]

Στην επιφάνεια μεταξύ τοίχου & γαιών (τομή 1-1) [STR]

Συντελεστής Κα	=	0,298
Συντελεστής ΚαΗ	=	0,284
Λόγω ώθησης γαιών-(Οριζόντια)	Hs =	13,78 [kN]
'Ωθηση γαιών λόγω μόνιμου φορτίου πρανούς-(Οριζόντια)	Hgn =	0,00 [kN]
Ώθηση γαιών λόγω κινητού φορτίου πρανούς-(Οριζόντια)	Ндп =	12,20 [kN]
Συνολική τέμνουσα δύναμη	VEd =	36,90 [kN]

Ροπές διαστασιολόγησης [τομή 1-1]

Λόγω ώθησης γαιών	MsH =	9,87 [kNm]
Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	Мдп =	0,00 [kNm]
Λόγω ώθησης γαιών από κινητό φορτίο πρανούς	Mqn =	13,12 [kNm]
Συνολική Ροπή	MEd =	33,01 [kNm]

Έλεγχος ολίσθησης - (GEO) (EC7 §6.5.3)

Φόρτιση - ΣΦ(1) [Στατική φόρτιση]

0 7/	,
$() \cap () \cap () \top ()$	$(D \cap O \cap T) \cap O$
Opiçovnu	φυρπα

Vk =	209,77 [kN]
Fp =	71,85 [kN]
	<u>Vk</u> = Fp =

Fespa 10 7.1.0.64 - 2017_KEFALONIA.tsc - Σελίδα 4/10

Έργο Παρουσίαση αποτελεσμάτων			
Αντίσταση ολίσθησης = Vk*εφ(δ)/γRH+λ*Fp/γRV	Rd =	164,39 [kN]	
Συντελεστής ασφαλείας έναντι ολίσθησης	SF =	1,83	

Έλεγχος ανατροπής - (EQU) (EC7 §2.4.7.2)

Φόρτιση - ΣΦ(6) [Στατική φόρτιση]

Ροπές ανατροπής

 Συνολική ροπή ανατροπής
 Mov =
 35,75
 [kNm]

Ροπές ευστάθειας

Συνολική ροπή ευστάθειας	Msta =	325,70 [kNm
Συντελεστής ασφαλείας έναντι ανατροπής	SF =	9,11
EKKENTPOTHTA $\Rightarrow \xi = \frac{325,70[kNm] - 35,75[kNm]}{188,79[kN]} = 1,54[m] \Rightarrow e = \left\lceil \frac{L}{2} \right\rceil$	- ξ = 0,16	

Φόρτιση - ΣΦ(7) [Στατική φόρτιση]

Ροπές ανατροπής		
Συνολική ροπή ανατροπής	Mov =	9,20 [kNm]
Ροπές ευστάθειας		
Συνολική ροπή ευστάθειας	Msta =	325,70 [kNm]
Συντελεστής ασφαλείας έναντι ανατροπής	SF =	35,41
$EKKENTPOTHTA \Rightarrow \xi = \frac{325,70[kNm] - 9,20[kNm]}{188,79[kN]} = 1,68[m] \Rightarrow e = \left[\frac{L}{2} + \frac{1}{2}\right]$	- ξ] = 0,02	

Έλεγχος Φέρουσας Ικανότητας - (GEO)

Φόρτιση - ΣΦ(1) [Στατική φόρτιση]

			10.00 [1.11]
Οριζοντία δυναμή	HK	=	42,38 [KN]
Κατακόρυφη δύναμη	Vk	=	209,77 [kN]
Ροπή σχεδιασμού [Mst-Mov]	Mk	=	335,83 [kNm]
Εκκεντρότητα φόρτισης	e	=	0,10 [m]
Ενεργό πλάτος θεμελίωσης	b'	=	3,20 [m]
Φέρουσα Ικανότητα εδάφους	RVd	=	917,10 [kN]
Συντελεστής ασφαλείας έναντι υπέρβασης της Φέρουσας Ικανότητας = [RVd/Vd]	SF	=	3,24
Έλεγχος εκκεντρότητας (EC7 §6.5.4) $\Rightarrow e = \left[\frac{L}{2} - \xi\right] = 0,10 \le \frac{L}{6} = 0,57[m]$			

Τάσεις εδάφους & Ροπές διαστασιολόγησης πέλματος

Κατακόρυφη δύναμη	Vd	=	283,19	[kN]
Κατακόρυφη δύναμη	Md	=	454,61	[kN]
Εκκεντρότητα φόρτισης	е	=	0,09	[m]
Μέγιστη τάση στο θεμέλιο	σmax	=	97,21	[kN/m²]
Ελάχιστη τάση στο θεμέλιο	σmin	=	69,37	[kN/m²]
Μήκος προβόλου υπολογισμού	L	=	3,00	[m]
Τάση στην θέση υπολογισμού 2-2	σ22	=	93,93	[kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 2-2 (πίσω πρόβολος), για οπλισμό	M22	=	-54,26	[kN/m]
Τάση στην θέση υπολογισμού 3-3	σ33	=	97,21	[kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 3-3 (εμπρός πρόβολος), για οπλισμό	M33	=	0,00	[kN/m]

Συντελεστές υπολογισμού Φέρουσας Ικανότητας

Συντελεστής κλίσης φορτίου

0,73

ic =

Φόρτιση - ΣΦ(3) [Στατική φόρτιση]

Οριζόντια δύναμη	Hk	=	42,38 [kN]
Κατακόρυφη δύναμη	Vk	=	271,77 [kN]
Ροπή σχεδιασμού [Mst-Mov]	Mk	=	450,53 [kNm]
Εκκεντρότητα φόρτισης	e	=	0,04 [m]
Ενεργό πλάτος θεμελίωσης	b'	=	3,32 [m]
Φέρουσα Ικανότητα εδάφους	RVd	=	1027,32 [kN]
Συντελεστής ασφαλείας έναντι υπέρβασης της Φέρουσας Ικανότητας = [RVd/Vd]	SF	=	2,73
Έλεγχος εκκεντρότητας (EC7 §6.5.4) $\Rightarrow e = \left[\frac{L}{2} - \xi\right] = 0.04 \le \frac{L}{c} = 0.57[m]$			

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Τάσεις εδάφους & Ροπές διαστασιολόγησης πέλματος

Vd	=	376,19	[kN]
Md	=	626,66	[kN]
e	=	0,03	[m]
σmax	=	117,32	[kN/m²]
σmin	=	103,97	[kN/m²]
L	=	3,00	[m]
σ22	=	115,75	[kN/m²]
M22	=	-52,75	[kN/m]
σ33	=	117,32	[kN/m²]
M33	=	0,00	[kN/m]
	Vd Md e omax omin L o22 M22 033 M33	Vd = Md = e = omax = omin = L = c22 = M22 = m33 = M33 =	$Vd =$ 376,19 $Md =$ 626,66 $e =$ 0,03 $\sigma max =$ 117,32 $\sigma min =$ 103,97 $L =$ 3,00 $\sigma 22 =$ 115,75 $M22 =$ -52,75 $\sigma 33 =$ 117,32 $M33 =$ 0,00

0,79

ic =

Συντελεστές υπολογισμού Φέρουσας Ικανότητας

Συντελεστής κλίσης φορτίου

Σεισμική φόρτιση

[1.] Σεισμός προς τα πάνω [αρνητικός]

Παθητική ώθηση στον τοίχο από Mononobe-Okabe

Γωνία κλίσης υπολογισμού Συντ. υπολογισμού παθ. ώθησης	θ = kP =	18,595 [°] 2,57
Γαίες τοίχου εμπρός	FpS =	48,60 [kN]
Από μόνιμο πόδα (εμπρός)	Fpg =	0,00 [kN]
Από κινητό πόδα (εμπρός)	Fpq =	0,00 [kN]
Συνολική παθητική ώθηση	Fp =	48,60 [kN]

Συντελεστές ενεργητικής ώθησης από Mononobe-Okabe στην παρειά (A-A)

Συντελεστής Kae	Kae =	0,569
Συντελεστής ΚaeH	KaeH =	0,569

Στην κατακόρυφη παρειά Α-Α [EQU, GEO]

Οριζόντια συνιστώσα λόγω ενεργητικής ώθησης		
Λόγω γαιών	Hs =	66,34 [kN]
Λόγω μόνιμου φορτίου πρανούς	Ндп =	0,00 [kN]
Λόγω κινητού φορτίου πρανούς[*ψ2]	Ндп =	17,55 [kN]
Συνολική ενεργητική ώθηση	=	85,64 [kN]
Κατακόρυφη συνιστώσα λόγω ενεργητικής ώθησης		
Λόγω γαιών	Vs =	0,00 [kN]
Λόγω μόνιμου φορτίου πρανούς	Vgп =	0,00 [kN]
Λόγω κινητού φορτίου πρανούς[*ψ2]	Vqn =	0,00 [kN]

Ροπές ανατροπής κ' ευστάθειας.

Ροπές ανατροπής				
Λόγω αδρανειακής δύναμης τοίχου	Mw	=	8,30	[kNm]
Λόγω αδρανειακής δύναμης γαιών	Ms	=	60,71	[kNm]
Λόγω ώθησης γαιών	MHs	=	13,27	[kNm]
Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	МНдп	=	0,00	[kNm]
Λόγω ώθησης γαιών από κινητό φορτίο πρανούς[*ψ2]	МНап	=	14,04	[kNm]
Ροπές ευστάθειας				
Ροπή λόγω ίδιου βάρους τοίχου	Mw	=	98,30	[kNm]
Ροπή λόγω ίδιου βάρους γαιών	Ms	=	221,00	[kNm]
Λόγω ώθησης γαιών (κατακόρυφα)	Mvs	=	0,00	[kNm]
Λόγω ώθησης μόνιμου φορτίου πρανούς (κατακόρυφα)	Мудп	=	0,00	[kNm]
Λόγω ώθησης κινητού φορτίου πρανούς (κατακόρυφα)[*ψ2]	М∨qп	=	0,00	[kNm]
Λόγω παθητικής ώθησης εμπρός	MPas	=	-25,11	[kNm]

Στην επιφάνεια μεταξύ τοίχου & γαιών (τομή 1-1) [STR]

Συντελεστής Κα	=	0,595
Συντελεστής ΚαΗ	=	0,567
Λόγω ώθησης γαιών-(Οριζόντια)	Hs =	23,55 [kN]
Ώθηση γαιών λόγω μόνιμου φορτίου πρανούς-(Οριζόντια)	Ндп =	0,00 [kN]
Ώθηση γαιών λόγω κινητού φορτίου πρανούς-(Οριζόντια)[*ψ2]	Hqn =	10,43 [kN]
Αδρανειακή δύναμη τοίχου	Hw =	5,42 [kN]
Συνολική τέμνουσα δύναμη	VEd =	39,39 [kN]

Ροπές διαστασιολόγησης [τομή 1-1]

Λόγω ώθησης γαιών MsH = 16,87 [kNm] Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς Mgn = 0,00 [kNm] Λόγω ώθησης γαιών από κινητό φορτίο πρανούς[*ψ2] Mgn = 11,21 [kNm]	Συνολική Ροπή	MEd	=	33,91	[kNm]	
Λόγω ώθησης γαιών Math 5/22 [κ/m] Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς MsH = 16,87 [k/m]	Λόγω ώθησης γαιών από κινητό φορτίο πρανούς[*ψ2]	Мдп	=	11,21	[kNm]	
Λόγω ἀθρανείακης ὑσναμης τοιχού $MsH = 16,87$ [kNm]	Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	Мдп	=	0,00	[kNm]	
	Λόγω ώθησης γαιών	MsH	=	16,87	[kNm]	
Λόγ() αδοαγειακής δύγαμης τοίχου	Λόγω αδρανειακής δύναμης τοίχου	Mw	=	5,82	[kNm]	

Έλεγχος ολίσθησης - (GEO) (EC7 §6.5.3)

Φόρτιση - ΣΣ(1) [Σεισμική φόρτιση]

Οριζόντια	φορτία
	T - P

Δύναμη ολίσθησης σχεδιασμού	Hd =	144,30 [kN]
Κατακόρυφα φορτία - Αντίσταση έναντι ολίσθησης		
Συνολική κατακόρυφη δύναμη	Vd =	179,56 [kN]
Παθητική ώθηση γαιών	Fp =	48,60 [kN]
Αντίσταση ολίσθησης = Vd*εφ(δ)/γRH+λ*Fp/γRV	Rd =	154,87 [kN]
Συντελεστής ασφαλείας έναντι ολίσθησης	SF =	1,07

Έλεγχος ανατροπής - (EQU) (EC7 §2.4.7.2)

Φόρτιση - ΣΣ(1) [Σεισμική φόρτιση]

Ροπές ανατροπής			
Συνολική ροπή ανατροπής	Mov	=	96,32 [kNm]
Ροπές ευστάθειας			
Συνολική ροπή ευστάθειας	Msta	=	311,77 [kNm]
Συντελεστής ασφαλείας έναντι ανατροπής	SF	=	3,24
$EKKENTPOTHTA \Rightarrow \xi = \frac{311,77[kNm] - 96,32[kNm]}{179,56[kN]} = 1,20[m] \Rightarrow e^{=}$	$\left[\frac{L}{2}-\xi\right]=0,50$		

Έλεγχος Φέρουσας Ικανότητας - (GEO)

Φόρτιση - ΣΣ(1) [Σεισμική φόρτιση]

Οριζόντια δύναμη	Hd	=	129,72 [kN]
Κατακόρυφη δύναμη	Vd	=	179,56 [kN]
Ροπή σχεδιασμού [Mst-Mov]	MEd	=	215,45 [kNm]
Εκκεντρότητα φόρτισης	e	=	0,50 [m]
Ενεργό πλάτος θεμελίωσης	b'	=	2,40 [m]
Φέρουσα Ικανότητα εδάφους	RVd	=	219,41 [kN]
Συντελεστής ασφαλείας έναντι υπέρβασης της Φέρουσας Ικανότητας = [RVd/Vd]	SF	=	1,22
Г. Э .			

Έλεγχος εκκεντρότητας (ΕC7 §6.5.4) \Rightarrow e= $\left|\frac{L}{2} - \xi\right|$ = 0,50 $\leq \frac{L}{6}$ =0,57[m]

Τάσεις εδάφους & Ροπές διαστασιολόγησης πέλματος

Κατακόρυφη δύναμη	Vd	=	179,56	[kN]
Κατακόρυφη δύναμη	Md	=	215,45	[kN]
Εκκεντρότητα φόρτισης	e	=	0,50	[m]
Μέγιστη τάση στο θεμέλιο	σmax	=	99,43	[kN/m²]
Ελάχιστη τάση στο θεμέλιο	σmin	=	6,20	[kN/m²]
Μήκος προβόλου υπολογισμού	L	=	3,00	[m]
Τάση στην θέση υπολογισμού 2-2	σ22	=	88,46	[kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 2-2 (πίσω πρόβολος), για οπλισμό	M22	=	-147,44	[kN/m]
Τάση στην θέση υπολογισμού 3-3	σ33	=	99,43	[kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 3-3 (εμπρός πρόβολος), για οπλισμό	M33	=	0,00	[kN/m]

Συντελεστές υπολογισμού Φέρουσας Ικανότητας

Συντελεστής κλίσης φορτίου	ic =	0,17

[2.] Σεισμός προς τα κάτω [θετικός]

Παθητική ώθηση στον τοίχο από Mononobe-Okabe

Γωνία κλίσης υπολογισμού	θ =	14,130 [°]
Συντ. υπολογισμού παθ. ώθησης	kP =	2,76
Γαίες τοίχου εμπρός	FpS =	69,76 [kN]
Από μόνιμο πόδα (εμπρός)	Fpg =	0,00 [kN]
Από κινητό πόδα (εμπρός)	Fpq =	0,00 [kN]
Συνολική παθητική ώθηση	Fp =	69,76 [kN]

Συντελεστές ενεργητικής ώθησης από Mononobe-Okabe στην παρειά (A-A)

Συντελεστής Kae	Kae =	0,485	
Συντελεστής KaeH	KaeH =	0,485	

Στην κατακόρυφη παρειά Α-Α [EQU, GEO]

Οριζόντια συνιστώσα λόγω ενεργητικής ώθησης		
Λόγω γαιών	Hs =	75,48 [kN]
Λόγω μόνιμου φορτίου πρανούς	Ндп =	0,00 [kN]
Λόγω κινητού φορτίου πρανούς[*ψ2]	Нап =	19,97 [kN]
Συνολική ενεργητική ώθηση	=	97,45 [kN]
Κατακόρυφη συνιστώσα λόγω ενεργητικής ώθησης		
Λόγω γαιών	Vs =	0,00 [kN]
Λόγω μόνιμου φορτίου πρανούς	Vgn =	0,00 [kN]
Λόγω κινητού φορτίου πρανούς[*ψ2]	Vqn =	0,00 [kN]

Ροπές ανατροπής κ' ευστάθειας.

Ροπές ανατροπής		
Λόγω αδρανειακής δύναμης τοίχου	Mw =	8,30 [kNm]
Λόγω αδρανειακής δύναμης γαιών	Ms =	60,71 [kNm]
Λόγω ώθησης γαιών	MHs =	15,10 [kNm]
Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	MHgn =	0,00 [kNm]
Λόγω ώθησης γαιών από κινητό φορτίο πρανούς[*ψ2]	MHqn =	15,97 [kNm]
Ροπές ευστάθειας		
Ροπή λόγω ίδιου βάρους τοίχου	Mw =	131,38 [kNm]
Ροπή λόγω ίδιου βάρους γαιών	Ms =	295,36 [kNm]
Λόγω ώθησης γαιών (κατακόρυφα)	Mvs =	0,00 [kNm]
Λόγω ώθησης μόνιμου φορτίου πρανούς (κατακόρυφα)	Mvgn =	0,00 [kNm]
Λόγω ώθησης κινητού φορτίου πρανούς (κατακόρυφα)[*ψ2]	Mvqn =	0,00 [kNm]
Λόγω παθητικής ώθησης εμπρός	MPas =	-36,04 [kNm]

Στην επιφάνεια μεταξύ τοίχου & γαιών (τομή 1-1) [STR]

Συντελεστής Κα	=	0,494
Συντελεστής ΚαΗ	=	0,471
Λόγω ώθησης γαιών-(Οριζόντια)	Hs =	26,13 [kN]
'Ωθηση γαιών λόγω μόνιμου φορτίου πρανούς-(Οριζόντια)	Hgn =	0,00 [kN]
Ώθηση γαιών λόγω κινητού φορτίου πρανούς-(Οριζόντια)[*ψ2]	Hqn =	11,57 [kN]
Αδρανειακή δύναμη τοίχου	Hw =	5,42 [kN]
Συνολική τἑμνουσα δὑναμη	VEd =	43,12 [kN]

Ροπές διαστασιολόγησης [τομή 1-1]

Λόγω αδρανειακής δύναμης τοίχου	Mw =	5,82 [kNm]
Λόγω ώθησης γαιών	MsH =	18,73 [kNm]
Λόγω ώθησης γαιών από μόνιμο φορτίο πρανούς	Мдп =	0,00 [kNm]
Λόγω ώθησης γαιών από κινητό φορτίο πρανούς[*ψ2]	Мqп =	12,44 [kNm]
Συνολική Ροπή	MEd =	36,99 [kNm]

Έλεγχος ολίσθησης - (GEO) (EC7 §6.5.3)

Φόρτιση - ΣΣ(2) [Σεισμική φόρτιση]

Oollow	montia
Οριζυντια	φυρπα

Δύναμη ολίσθησης σχεδιασμού	Hd =	155,86 [kN]
Κατακόρυφα φορτία - Αντίσταση έναντι ολίσθησης		
Συνολική κατακόρυφη δύναμη	Vd =	239,98 [kN]
Παθητική ώθηση γαιών	Fp =	69,76 [kN]
Αντίσταση ολίσθησης = Vd*εφ(δ)/γRH+λ*Fp/γRV	Rd =	208,42 [kN]

Fespa 10 7.1.0.64 - 2017_KEFALONIA.tsc - Σελίδα 8/10

Έλεγχος ανατροπής - (EQU) (EC7 §2.4.7.2)

Φόρτιση - ΣΣ(2) [Σεισμική φόρτιση]

Ροπές ανατροπής

Συνολική ροπή ανατροπής

Ροπές ευστάθειας

Συνολική ροηή ευστάθειαςMsta =415,92 [kNm]Συντελεστής ασφαλείας έναντι ανατροηήςSF =4,16ΕΚΚΕΝΤΡΟΤΗΤΑ $\Rightarrow \xi = \frac{415,92[kNm] - 100,09[kNm]}{239,98[kN]} = 1,32[m] \Rightarrow e = \left\lceil \frac{L}{2} - \xi \right\rceil = 0,38$

Έλεγχος Φέρουσας Ικανότητας - (GEO)

Φόρτιση - ΣΣ(2) [Σεισμική φόρτιση]

Οριζόντια δύναμη	Hd	= 134,93	[kN]
Κατακόρυφη δύναμη	Vd	= 239,98	[kN]
Ροπή σχεδιασμού [Mst-Mov]	MEd	= 315,84	[kNm]
Εκκεντρότητα φόρτισης	е	= 0,38	[m]
Ενεργό πλάτος θεμελίωσης	b'	= 2,63	[m]
Φέρουσα Ικανότητα εδάφους	RVd	= 455,36	[kN]
Συντελεστής ασφαλείας έναντι υπέρβασης της Φέρουσας Ικανότητας = [RVd/Vd]	SF	= 1,90	
Έλεγχος εκκεντρότητας (EC7 §6.5.4) $\Rightarrow e = \left[\frac{L}{2} - \xi\right] = 0.38 \le \frac{L}{6} = 0.57[m]$			

Τάσεις εδάφους & Ροπές διαστασιολόγησης πέλματος

Κατακόρυφη δύναμη	Vd =	239,98 [kN]
Κατακόρυφη δύναμη	Md =	315,84 [kN]
Εκκεντρότητα φόρτισης	e =	0,38 [m]
Μέγιστη τάση στο θεμέλιο	σmax =	118,40 [kN/m²]
Ελάχιστη τάση στο θεμέλιο	σmin =	22,77 [kN/m²]
Μήκος προβόλου υπολογισμού	L =	3,00 [m]
Τάση στην θέση υπολογισμού 2-2	σ22 =	107,15 [kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 2-2 (πίσω πρόβολος), για οπλισμό	M22 =	-69,71 [kN/m]
Τάση στην θέση υπολογισμού 3-3	σ33 =	118,40 [kN/m²]
Ροπή ελέγχου πεδίλου στην θέση 3-3 (εμπρός πρόβολος), για οπλισμό	M33 =	0,00 [kN/m]

Συντελεστές υπολογισμού Φέρουσας Ικανότητας

Συντελεστής κλίσης φορτίου	ic =	0,31

Διαστασιολόγηση τοίχου

Έλεγχος διάτμησης τοίχου

Έλεγχος επάρκειας πλάτους κορμού τοίχου

Τέμνουσα σχεδιασμού	VEd =	43,12 [kN]
Αντοχή σε τέμνουσα	VRdc =	222,32 [kN]
Συντελεστής ασφαλείας έναντι διάτμησης = [VRdc/VEd]	SF =	5,16
Ο έλεγχος έγινε σύμφωνα με τον EC2 §6.2.2 'Στοιχεία στα οποία δεν απαιτείται οπλισμός διάτμησης'		
O(t) source the set of the set	(DOOT GELC	

Ο έλεγχος έγινε για την δυσμενέστερη από όλες τις (στατικές + σεισμικές) φορτίσεις.

Οπλισμοί στις θέσεις ελέγχου

Σίδερο [1] - Παρειά γαιών		
Ροπή διαστασιολόγησης	M ₁₋₁ =	36,99 [kNm]
Απαιτούμενος κατακόρυφος οπλισμός	A _{s,req} =	4,00 [cm ²]
Τοποθετούνται : Φ10/19	A _{s,prv} =	4,13 [cm ²]

Fespa 10 7.1.0.64 - 2017_KEFALONIA.tsc - Σελίδα 9/10

1,34

SF =

Mov =

100,09 [kNm]

Σίδερο [2] - Παρειά ναιών		
Απαιτούμενος οριζόντιος οπλισμός = 20% Κύριου οπλισμού	A _{s.reg} =	5,24 [cm ²]
Τοποθετούνται : Φ10/15	A _{s,prv} =	5,24 [cm ²]
Σίδερα [3] + [4]		
Οπλισμός εμπρός πλευράς τοίχου αντιστήριξης		
Τοποθετούμενος οπλισμός = 20% Κύριου οπλισμού		
Εσχάρα: Φ10/15	A _{s,prv} =	5,24 [cm ²]
Σίδερο [5] - Πέδιλο, οπλισμός Ανω		
Ροπή διαστασιολόγησης	M ₂₋₂ =	-147,44 [kNm]
Απαιτούμενος άνω οπλισμός πέλματος	A _{s,reg} =	8,86 [cm²]
Τοποθετούνται : Φ10/8	A _{s,prv} =	9,82 [cm²]
Σίδερο [6]		
Τοποθετούμενος οπλισμός = 20% Κύριου οπλισμού		· · ·
Απαιτούμενος άνω πέλματος (διανομές)	A _{s,req} =	5,23 [cm²]
Τοποθετούνται : Φ10/15	A _{s,prv} =	5,24 [cm ²]
Σίδερα [7] - Πέδιλο, οπλισμός Κάτω		
Ροπή διαστασιολόγησης	M3-3 =	0,00 [kNm]
Απαιτούμενος κάτω οπλισμός πέλματος	A _{s.req} =	7,53 [cm²]
Εσχάρα: Φ10/10	A _{s,prv} =	7,85 [cm ²]
Σίδερο [8]		
Τοποθετούμενος οπλισμός = 20% Κύριου οπλισμού		
Απαιτούμενος κάτω πέλματος (διανομές)	A _{s.req} =	5,23 [cm ²]
Τοποθετούνται : Φ10/15	A _{s,prv} =	5,24 [cm ²]
Ο ελάχιστος οπλισμός σύμφωνα με:[EC2-1-1 §9.3.1.1]		

Προμέτρηση τοίχου

Πίνακας οπλισμών τοίχου αντιστήριξης

A/A	Αριθμός	Διάμετρος	Μήκος	Βάρος
[-]	[/]	[mm]	[m]	kg
1	6	10	3,05	11,29
2	21	10	1,00	12,95
3	7	10	2,35	10,14
4	16	10	2,35	9,86
5	13	10	4,20	33,66
6	23	10	1,00	14,18
7	10	10	4,20	25,89
8	23	10	1,00	6,17
9	119		17,80	124,15

Ποσότητες Σκυροδέματος - Σιδηρού οπλισμού

Ογκος σκυροδέματος τοίχου	Vt =	0,75 m3/µ.µ
Ογκος σκυροδέματος πεδίλου	Vp =	2,13 m3/µ.µ
Συνολικός όγκος σκυροδέματος	Vol =	2,88 m3/µ.µ
Βάρος σιδηρού οπλισμού τοίχου	=	44,25 kg/µ.µ
Βάρος σιδηρού οπλισμού πέλματος	=	79,90 kg/µ.µ
Βάρος σιδηρού οπλισμού	G =	124,15 kg/µ.µ
Αναλογία οπλισμού / σκυροδέματος	G/Vol =	43,07 kg/m3

Τέλος διαστασιολόγησης τοίχου αντιστήριξης

Τοίχος Αντιστήριξης

Τύπος: Τοίχος μορφής προβόλου

Γενικά στοιχεία τοίχου

Γωνία διατμητικής αντοχής επίχωσης: Γωνία τριβής τοίχου-επίχωσης: Γωνία τριβής στη βάση του θεμελίου: Κλίση πρανούς: Γωνία τριβής στη βάση του θεμελίου: Επιτρεπόμενη τάση εδάφους: Μόνιμο φορτίο πρανούς επίχωσης: Κινητό φορτίο πρανούς επίχωσης: Μόνιμο φορτίο πόδα (εμπρός): Κινητό φορτίο πόδα (εμπρός): Μόνιμο συγκεντρωμένο στέψης τοίχου: Κινητό συγκεντρωμένο στέψης τοίχου: Συντ. μεταβλητής δράσης ψ2:

32°
15°
38°
0°
21 kN/m ³
275 kN/m ²
0 kN/m ²
20 kN/m ²
0 kN/m ²
0 kN/m ²
0 kN
0 kN
0.5

Σκυρόδεμα: C25

Γεωμετρικάστοιχεία

Μήκος

Ύψος Πάχος πέλματος Πάχος πέλματος Επικάλυψη κύριων οπλισμών cnom = 0,05 m Ογκος σκυροδέματος

S1 = 3 mS2 = 0,1 mS3 = 0,3 mS4 = 0 mS5 = 0 mL = 3,4 mH = 2.6 mD1 = 0.45 mD2 = 0,45 m $V = 2,88 \text{ m}3/\mu.\mu$

Χάλυβας: B500C

Αποτελέσματα επίλυσης

Ενιαίοι συντελεστέςασφαλείας

Ολίσθηση [SF_ολ]	= 1,07
Ανατροπή [SF_EQU]	= 3,24
Φέρουσα Ικανότητα [SF]	_ΦI] = 1,22

Εντατικά Μενέθη - Οπλισμοί

M11 = 36,99 [kNm]	As11 = 4 cm ²	[1]=Φ10/19
M22 = -147,44 [kNm]	As22 = 8,86 cm ²	[5]=Φ10/8
M33 = 0 [kNm]	As33 = 7,53 cm ²	[7]=Φ10/10

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΜΙΚΡΟΠΑΣΣΑΛΟΥ

ΣΥΝΔΥΑΣΜΟΣ	Ροπή Κάμψης	Τέμνουσα	Αξονική
	kNm	kN	kN
Comb3	69.18	60.99	-205.9
Comb6	35.04	35.02	-163.0
Comb7	30.92	29.24	-242.6

Ως κρίσιμος συνδυασμός κρίνεται ο COMB3 (σεισμικός συνδυασμός).

Sections

Default design code is EuroNorm 1994-2:2005 Composite Structures (Europe) V 2016 Structure: B (Road bridges) Snow load zone : 1

Materials

SOFISTIK AG - www.sofistik.de

Mat	Classification	γ-M
1	S 235 (EN 1993)	1.10
2	C 25/30 (EN 1992)	1.50
3	B 500 B (EN 1992)	1.15

Cross-sections static properties

SNo	Mat	A[m2]	Ay[m2]		Iy[m4]	yc[mm]	ysc[mm]	E[N/mm2]	g[kN/m]		
	MRf	It[m4]	Az[m2]		Iz[m4]	zc[mm]	zsc[mm]	G[N/mm2]			
			Ayz[m2]	I	yz[m4]						
1	2	1.2589E-01	1.056E-01	8.6	13E-04	0.0	0.0	31476	2.67		
	3	1.533E-03	8.933E-02	7.7	04E-04	0.0	0.0	13115	(BEAM)		
	= SECTION 1										
	=	Composit wit	th materials:	: 2	1						
SNo		section nu	mber		ysc	[mm],zsc[mm]	ordinate	of shear centr	e		
Mat		material n	umber		E[N	/mm2]	Young's m	odulus			
A[m2]	A[m2] sectional area g[kN/m] weight per length										
Ay[m2],Az[Ay[m2],Az[m2],Ayz[m2] transverse shear deformation area MRf reinforcement material number										
Iy[m4],Iz[m4],Iy	z[m4] bending mo	ment of inertia		It[m4]	torsional	moment of ine	rtia		
vc[mm],zc[mm]	ordinate o	f elastic centroi	d	G[N	/mm2]	Shear mod	ulus			

Cross section No. 1 - SECTION 1

Static properties of cross section

Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	ysc[mm]	E[N/mm2]	g[kN/m]		
MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	zsc[mm]	G[N/mm2]			
		Ayz[m2]	Iyz[m4]						
2	1.2589E-01	1.056E-01	8.613E-04	0.0	0.0	31476	2.67		
3	1.533E-03	8.933E-02	7.704E-04	0.0	0.0	13115	(BEAM)		
Mat		material number		E[N/m	m2] Young'	s modulus			
A[m2]		sectional area		g[kN/	m] weight	per length			
Ay[m2]	,Az[m2],Ayz[m2]	transverse shear	deformation area	MRf	reinfo	rcement materi	al number		
Iy[m4]	,Iz[m4],Iyz[m4]	bending moment of	inertia	It[m4] torsio	torsional moment of inertia			
yc[mm]	,zc[mm]	ordinate of elast	ic centroid	G[N/m	[N/mm2] Shear modulus				
ysc[mm],zsc[mm]	ordinate of shear	centre						

Additional static properties of cross section

α-T[1/K]	ymin[mm]	zmin[mm]	hymin[mm]	AK[m2]	MRs	1/WT[1/m3]	1/WVy[1/m2]	
	ymax[mm]	<pre>zmax[mm]</pre>	hzmin[mm]	AB[m2]		1/WT2[1/m3]	1/WVz[1/m2]	
1.0E-05	-175.0	-175.0		5.276E-02	3	3.351E+02	7.120E+01	
	175.0	175.0		8.969E-02		5.734E+03	9.454E+01	
α-T[1/K] Elongation coefficient								
ymin[mm],zmin[mm],ymax[mm],zmax[mm] extreme co	ordinates relat:	ive to centroid				
hymin[mm],hzmin[mm]	minimum va	lue for interna	l lever				
AK[m2]		torsional	torsional equivalent area (Bredt)					
MRs		shear link	material number	r				
1/WT[1/m3],1/WT2	[1/m3]	torsional	torsional resistance					
1/WVy[1/m2],1/WV	z[1/m2]	shear forc	shear force resistance					
AB[m2]		gross conc	rete area					

Sections

Section values for warping

Wmin[m2]	Wmax[m2]	CM[m6]	CMS[m4]	ASwyy[m6]	ASwzz[m6]	ry[mm]	rz[mm]
-0.0021	0.0021	5.939E-08	0.000	6.038E-14	-4.392E-14	0.0	0.0
Wmin[m2],Wmax[m2]	unit warping		ASwyy[m6],ASw	wzz[m6] warping	sectional valu	e	
CM[m6]	warping resis	tance	ry[mm],rz[mm]] sectior	al distance		
CMS[m4]	warping shear	resistance					

Partial cross sections

Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	E[N/mm2]	g[kN/m]			
MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	G[N/mm2]				
		Ayz[m2]	Iyz[m4]						
2	8.9691E-02	8.163E-02	6.950E-04	0.0	31476	2.24			
	1.461E-03	7.713E-02	7.111E-04	0.0	13115				
			2.118E-11						
1	5.4251E-03	3.895E-03	2.492E-05	0.0	210000	0.43			
	1.175E-05	1.981E-03	8.893E-06	0.0	80770				
			2.312E-22						
Mat		material number							
A[m2]		sectional area							
Ay[m2]	,Az[m2],Ayz[m2]	transverse shear	deformation area						
Iy[m4]	,Iz[m4],Iyz[m4]	bending moment of inertia							
yc[mm]	,zc[mm]	ordinate of elastic centroid							
E[N/mm:	2]	Young's modulus							
g[kN/m]	weight per length							
MRf		reinforcement material number							
It[m4]		torsional moment of inertia							
G[N/mm	2]	Shear modulus							

Design values of cross section

Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	E[N/mm2]	g[kN/m]			
MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	G[N/mm2]				
		Ayz[m2]	Iyz[m4]						
2	1.3905E-01	1.167E-01	9.217E-04	0.0	20984	2.67			
	1.693E-03 9.867E-02 7.920E-04 0.0 8743								
Mat material number									
A[m2]		sectional area							
Ay[m2]	,Az[m2],Ayz[m2]	transverse shear	deformation area						
Iy[m4]	,Iz[m4],Iyz[m4]	bending moment of	inertia						
yc[mm]	,zc[mm]	ordinate of elast	ic centroid						
E[N/mm2	2]	Young's modulus							
g[kN/m]	g[kN/m] weight per length								
MRf	MRf reinforcement material number								
It[m4]	It[m4] torsional moment of inertia								
G[N/mm2	2]	Shear modulus							

Design forces and moments

	N[kN]	Vy[kN]	Vz[kN]	Mt[kNm]	Mt2[kNm]	Mb[kNm2]	My[kNm]	Mz[kNm]	y[mm]	z[mm]	BUCK
=	(C/E = ch	naracteris	stic plast	ic/elasti	ic, D=plas	st.Design,	F=elast.	Design)	_		
C	1274.9	1909.46	1844.81	203.78	43.34	7.65	114.58	100.21	-35.1	-69.3	bс
C	-947.5		1295.35				154.05	0.00	0.0	0.0	COMB
C	965.2	1327.97					0.00	112.77	0.0	0.0	COMB
C	-3180.8	1909.46	1844.81	203.78	43.34	7.65	-114.58	-100.21	35.1	69.3	
c	-958.4		1295.35				-154.05	0.00	0.0	0.0	COMB
C	940.7	1327.97					0.00	-112.77	0.0	0.0	COMB
E	4434.1	689.50	780.87	42.89	15.05	0.61	104.59	93.55	0.0	0.0	
E	-2675.1	689.50	780.87	42.89	15.05	1.01	-104.59	-93.55	0.0	0.0	
D	1159.0	1451.42	1408.31	148.38	39.60	5.81	98.76	79.66	-23.9	-68.0	
D	-631.5		1042.01				122.86	0.00	0.0	0.0	COMB
D	646.4	1063.75					0.00	84.86	0.0	0.0	COMB
D	-2429.6	1451.42	1408.31	148.38	39.60	5.81	-98.76	-79.66	23.9	68.0	
D	-639.1		1042.01				-122.86	0.00	0.0	0.0	COMB
D	624.2	1063.75					0.00	-84.86	0.0	0.0	COMB
F	4031.0	459.67	520.58	28.60	10.03	0.40	69.72	62.37	0.0	0.0	
F	-1783.4	459.67	520.58	28.60	10.03	0.91	-69.72	-62.37	0.0	0.0	
N[kN]	nor	rmal force		Mb[kNm2] war	ping moment					
Vy[kN],Vz[kN] she	ear force		My[kNm]	Mz[kNm] ben	ding moment					
Mt[kN	mj pri Nml con	Lmary torsion	a⊥ moment	y[mm],z	[mm] ord	inate of elas	tic centroid				
muZ[K	wiiij see	Lonuary Lorsi	unar moment	DUCK	Duc	KITING CULVE					

Sections

Additional Design Data

Mat	periph	ery-0/-I	deff	t-min	t-max	SMP	thet-p	thet-y	thet-z	thet-yz
	[m2/m]	[m2/m]	[mm]	[mm]	[mm]	[0/0]	[tm2/m]	[tm2/m]	[tm2/m]	[tm2/m]
	2.016	0.919		8.0	13.0	0.0	0.004	0.002	0.002	0.000
2	1.096	0.919	163.6			0.0	0.004	0.002	0.002	0.000
1	0.919		11.8	8.0	13.0	0.0	0.000	0.000	0.000	0.000
Mat	m	aterial numb	ber		t-min,t-m	ax	thickness			
periphery-O/-I peripheral area per length				SMP		sr	mall parts pe	rcentage		
deff	e	ffective dep	oth		thet-p,th	et-y,the	y,thet-z,thet-yz rotational mass			

Reinforcement global values

Layer		Mref	Mat	As	As-min	As-max	yr	zr	L-tors	N-p	My-p	Mz-p
				[cm2]	[cm2]	[cm2]	[mm]	[mm]	[mm]	[kN]	[kNm]	[kNm]
M1		0	3	0.00	0.00		0.0	0.0				
M2		0	3	0.00	0.00		0.0	0.0				
M3		0	3	0.00	0.00		0.0	0.0				
M4		0	3	0.00	0.00		0.0	0.0				
Layer	layer	r of re	inforce	ment	As-max	maximum re	inforcement	area				
Mref	embed	dding r	eferenc	e material	yr,zr	ordinate c	of elastic c	entroid				
Mat	mater	rial nu	mber		L-tors	torsional effective length						
As	reinf	Forceme	nt area		N-p	prestress normal force						
As-min	minin	num rei	nforcem	ent area	My-p,Mz-p	prestress	bending mom	ent				

Rolled steel

Roll	ed steel		D[mm]	B[mm]	s[mm]	t[mm]	r[mm]	yr[mm]	zr[mm]	[grd]
HEB	160.0		160.0	160.0	8.0	13.0	15.0			
D[mm]	height	t[m	m]	flange thic	kness					
B[mm]	width	r[m	m]	fillet radi	us					
s[mm]	web thickness	yr[mm],zr[mm]	sectional o	oordinate					

SOFiSTiK Hellas	s S.A.	
SOFiSTiK 2016	SOFIMSHC - STRUCTURAL ELEMENTS AND GEOMETRY	(V 16.00)

Mesh Generation

Default design code is EuroNorm 1994-2:2005 Composite Structures (Europe) V 2016 Structure: B (Road bridges) Snow load zone : 1

Mat 1 S 235 (EN 1993)

Young's modulus	Е	210000	[N/mm2]	Safetyfactor		1.10	[-]
Poisson's ratio	μ	0.30	[-]	Yield stress	fy	235.00	[MPa]
Shear modulus	G	80770	[N/mm2]	Compressive yield	fyc	235.00	[MPa]
Compression modulus	К	175000	[N/mm2]	Tensile strength	ft	360.00	[MPa]
Weight	γ	78.5	[kN/m3]	Compressive strength	fc	360.00	[MPa]
Density	ρ	7850.00	[kg/m3]	Ultimate strain		100.00	[0/00]
Elongation coefficient	α	1.20E-05	[1/K]	relative bond coeff.		0.00	[-]
max. thickness	t-max	40.00	[mm]	EN 1992 bond coeff.	k1	0.00	[-]
				Hardening modulus	Eh	0.00	[MPa]
				Proportional limit	fp	235.00	[MPa]
				Dynamic allowance	σ-dyn	0.00	[MPa]

Stress-Strain for serviceability	ε[0/00]	σ-m[MPa]	E-t[N/mm2]
Is also extended beyond the	1000.000	360.00	0
defined stress range	100.000	360.00	0
	1.119	235.00	1264
	0.000	0.00	210000
	-1.119	-235.00	1264
	-100.000	-360.00	0
	-1000.000	-360.00	0
	Safetyfactor		1 10

Stress-Strain for ultimate load	ε[0/00]	σ-u[MPa]	E-t[N/mm2]
Is also extended beyond the	1000.000	360.00	0
defined stress range	100.000	360.00	0
	1.119	235.00	1264
	0.000	0.00	210000
	-1.119	-235.00	1264
	-100.000	-360.00	0
	-1000.000	-360.00	0
	Safetyfactor		1.10

S 235 (EN 1993)

Mat 2 C 25/30 (EN 1992)

Young's modulus	E	31476	[N/mm2]	Safetyfactor		1.50	[-]
Poisson's ratio	μ	0.20	[-]	Strength	fc	21.25	[MPa]
Shear modulus	G	13115	[N/mm2]	Nominal strength	fck	25.00	[MPa]
Compression modulus	К	17487	[N/mm2]	Tensile strength	fctm	2.56	[MPa]
Weight	γ	25.0	[kN/m3]	Tensile strength	fctk,05	1.80	[MPa]
Density	ρ	2400.00	[kg/m3]	Tensile strength	fctk,95	3.33	[MPa]
Elongation coefficient	α	1.00E-05	[1/K]	Bond strength	fbd	2.69	[MPa]

SOFiSTiK Hellas	s S.A.	
SOFiSTiK 2016	SOFIMSHC - STRUCTURAL ELEMENTS AND GEOMETRY	(V 16.00)

Mesh Generation

Mat 2 C 25/30 (EN 1992)

		Service	strength	fcm	33.00	[MPa]
		Fatigue	strength	fcd,fat	12.75	[MPa]
		Tensile	strength	fctd	1.20	[MPa]
Stress-Strain for serviceability	/		ε[o/oo]	σ-m[MPa]]	E-t[N/mm2]
Is only valid within the defined	1		0.000	0.0	3	33050

Is only valid within the defined	0.000	0.00	33050
stress range	-1.035	-25.04	15658
	-2.069	-33.00	0
	-3.500	-18.95	-19203
	Safetyfactor		1.50

Stress-Strain for ultimate load	ε[0/00]	σ-u[MPa]	E-t[N/mm2]
Is only valid within the defined	0.000	0.00	21250
stress range	-2.000	-21.25	0
	-3.500	-21.25	0
	Safetyfactor	•	1.50

Stress-Strain of calc. mean values	ε[0/00]	σ-r[MPa]	E-t[N/mm2]
Is only valid within the defined	0.000	0.00	27541
stress range	-1.035	-12.41	4259
	-2.069	-14.17	0
	-3.500	-12.64	-1802
	Safetyfactor		(1.50)

C 25/30 (EN 1992)

Mat 3 B 500 B (EN 1992)

Young's modulus	E	200000	[N/mm2]	Safetyfactor		1.15	[-]
Poisson's ratio	μ	0.30	[-]	Yield stress	fy	500.00	[MPa]
Shear modulus	G	76923	[N/mm2]	Compressive yield	fyc	500.00	[MPa]
Compression modulus	К	166667	[N/mm2]	Tensile strength	ft	540.00	[MPa]
Weight	γ	78.5	[kN/m3]	Compressive strength	fc	540.00	[MPa]
Density	ρ	7850.00	[kg/m3]	Ultimate strain		50.00	[0/00]
Elongation coefficient	α	1.20E-05	[1/K]	relative bond coeff.		1.00	[-]
max. thickness	t-max	32.00	[mm]	EN 1992 bond coeff.	k1	0.80	[-]
				Hardening modulus	Eh	0.00	[MPa]
				Proportional limit	fp	500.00	[MPa]
				Dynamic allowance	σ-dyn	152.17	[MPa]

Stress-Strain for serviceability	ε[0/00]	σ-m[MPa]	E-t[N/mm2]
Is also extended beyond the	1000.000	540.00	0
defined stress range	50.000	540.00	0
	2.500	500.00	842
	0.000	0.00	200000
	-2.500	-500.00	842
	-50.000	-540.00	0

Page 5 2017-08-10

SOFISTIK Hellas S.A. SOFISTIK 2016 SOFIMSHC - STRUCTURAL ELEMENTS AND GEOMETRY (V 16.00)

Stress-Strain for serviceability	ε[0/00]	σ-m[MPa]	E-t[N/mm2]
	-1000.000	-540.00	0
	Safetyfactor		1.15
Stress-Strain for ultimate load	ε[0/00]	σ-u[MPa]	E-t[N/mm2]
Is also extended beyond the	1000.000	469.57	0
defined stress range	50.000	469.57	0
	2.174	434.78	727
	0.000	0.00	200000
	-2.174	-434.78	727
	-50.000	-469.57	0
	-1000.000	-469.57	0
	Safetyfactor		(1.15)

Stress-Strain of calc. mean values	ε[0/00]	σ-r[MPa]	E-t[N/mm2]
Is also extended beyond the	1000.000	469.57	0
defined stress range	50.000	469.57	0
	2.174	434.78	727
	0.000	0.00	200000
	-2.174	-434.78	727
	-50.000	-469.57	0
	-1000.000	-469.57	0
	Safetvfactor		(1.15)

Thermal material constants

Mat	T[°C]	S[kJ/K/m3]	Kxx[W/K/m]	Kyy[W/K/m]	Kzz[W/K/m]	
1	AUTO	3.45E+03	5.333E+01			S 235 (EN 1993)
2	AUTO	2.16E+03	1.951E+00			C 25/30 (EN 1992)
3	AUTO	3.45E+03	5.333E+01			B 500 B (EN 1992)
Mat	material nu	ımber S[kJ/K/m3	3]	Heat cap	acity	
T[°C]] Temperature Kxx[W/K/		n],Kyy[W/K/m],Kzz	[W/K/m] Heat con	ductivity	

Sectional Values

SNo	Mat	A[m2]	Ay[m2]	Iy[m4]	yc[mm]	ysc[mm]	E[N/mm2]	g[kN/m]			
	MRf	It[m4]	Az[m2]	Iz[m4]	zc[mm]	zsc[mm]	G[N/mm2]				
			Ayz[m2]	Iyz[m4]							
1	2	1.2589E-01	1.056E-01	8.613E-04	0.0	0.0	31476	2.67			
	3	1.533E-03	8.933E-02	7.704E-04	0.0	0.0	13115	(BEAM)			
	= SECTION 1										
	=	Materials	2 1								
SNo		section nu	mber	ysc	[mm],zsc[mm]	ordinate	of shear centr	e			
Mat		material n	umber	E[N	/mm2]	Young's m	Young's modulus				
A[m2]		sectional	area	g[k	N/m]	weight pe	weight per length				
Ay[m2],Az[m2],Ay	z[m2] transverse	shear deformatio	on area MRf		reinforce	ment material	number			
Iy[m4],Iz[m4],Iy	z[m4] bending mo	ment of inertia	It[m4]	torsional moment of inertia					
yc[mm],zc[mm] ordinate of elastic centroid G[N/mm2] Shear modulus											

Page 6 2017-08-10

SOFISTIK Hellas S.A. SOFISTIK 2016 SOFIMSHC - STRUCTURAL ELEMENTS AND GEOMETRY (V 16.00)

Mesh Generation

Structural Elements

Structural Points

Number	X[m]	Y[m]	Z[m]	Support Conditions	Designation
1001	0.000	0.000	-10.000		
1002	0.000	0.000	0.000		

Structural Lines

Number	SPt-a	SPt-e	Ref	Туре	SNo	Grp	Hinges-a	Hinges-e	Designation	
1	1001	1002		CENT	1	1			Line	
SPt-a,SPt-e	structu	structural point start / end				lon numb	per			
Ref	referen	reference line, reference axis			Grp prima	Grp primary group number				
Type element type										

Design Cross Section

Default design code is EuroNorm EN 1992-1-1:2004 Concrete Structures (Europe) V 2016 Structure and Tab.7.1N: AN (Buildings)

Materials

Mat	Classification	γ-M
1	S 235 (EN 1993)	1.10
2	C 25/30 (EN 1992)	1.50
3	B 500 B (EN 1992)	1.15

Design Forces and Moments

Beam	x[m]	N[kN]	Vy[kN]	Vz[kN]	Mtp[kNm]	Mts[kNm]	My[kNm]	Mz[kNm]	Mb[kNm2]
1000001	0.000	-205.9	60.99	0.00	0.00	0.00	69.18	0.00	0.00
N[kN]	normal	force	Mts[kNr	Mts[kNm] secondary torsional moment					
Vy[kN],Vz[kN]] shear f	orce	My[kNm]	My[kNm],Mz[kNm] bending moment					
Mtp[kNm]	tp[kNm] primary torsional moment			2] warpi	ng moment				

Design for Ultimate Loads - EuroNorm EN 1992-1-1:2004 Concrete Structures

	0										
Safe	ty factors	γ-c1	γ-c2	γ-cs	γ-s1	γ-s2	γ-ss	Biaxial bending			
Stra	in limits	ε-c1	ε-c2	ε-s1	ε-s2	ε-z1	ε-z2	CTRL-options			
		1.50	1.50	1.50	1.15	1.15	1.00				
		-3.50	-2.001	δ= 1.00²	45.00	-3.50	20.00	PIIA = 7			
1 Str	Strain limits will be adopted to active stress strain definitions of material										
2 Val	2 Value is obtained from maximum height of compression zone based on the redistribution grade δ (EN 1992-1-1, 5.5)										
γ-c1	global safety fac	tor for concr	ete in bendi	ng	γ-s2 globa	al safety fac	tor for reinf	Forcements in compression			
γ-c2	global safety fac	tor for concr	ete in compr	ession	γ-ss globa	al safety fac	tor for struc	tural steel			
γ-cs	global safety fac	tor for concr	ete in shear		ε-c1 strai	In limit for	compression o	of concrete			
γ-s1	global safety fac	tor for reinf	orcements in	bending	ε-c2 strai	In limit for	centric compr	ression of concrete			
ε-s1	strain limit for	a selected x/	d ratio trig	gering symmet	ric reinforce	ements					
ε-s2	ε-s2 strain limit for tension respective hardening of reinforcements										
ε-z1	ε-z1 incremental strain limit for tendons in compression										
ε-z2	incremental strai	n limit for t	endons in te	nsion							

Parameters for reinforcements

Mi	nimum reinfor	cement	t	Compressive Member	Limits	Minimum rein	forcement of	Maximum	
	for beams for column			e/h	N/Npl	the required	section	reinforcemen	ts
	0.13 [o/o]	0.20	[o/o]	3.501	0.0010 ¹	0.00 [o/o]	0.10*Ned/fyd	8.00	[o/o]
1	A beam is taken as	compres	sive member	if the eccentricity e/h i	s less and th	e compressive for	e is larger than thes	e limits	

Tensile forces in the longitudinal reinforcements due to shear are NOT accounted for. Material of sections uses Ultimate Limit strain-stress law with individual safety factors Material of reinforcements uses Ultimate Limit strain-stress law with individual safety factors

Applied material properties

Mat	Temp	Safety	Max.compr	at	Max.tens	at	Tension-	Bond
	Lev.	factor	stress	strain	stress	strain	stiffening	factor
		[-]	[MPa]	[0/00]	[MPa]	[0/00]	[MPa]	[-]
1	0	1.100	-327.27	-100.00	327.27	100.00		
2	0	1.500	-16.67	-2.00	0.00	0.00	fc,t = 0.00	
3	0	1.150	-469.57	-50.00	469.57	50.00		

Required Reinforcements

nequil et		e e in e i											
Beam	x[m]	SNo	LC	Ni	Myi	Mzi	ε-1	ε-2	γ-c	γ-s	rel	As	Lay.
				[kN]	[kNm]	[kNm]	[o/o]	[o/o]	[-]	[-]	[-]	[cm2]	
				ΔNi	∆Vyi	ΔVzi	yn	zn	e+	e-	z		
				[kN]	[kN]	[kN]	[mm]	[mm]	[mm]	[mm]	[mm]		
1000001	0.000	1	0	-239.6	80.50	0.00	-1.54	1.74	1.50		1.16	e/h > max	
								-10	69.5	-89.9	171.4		
Ni,Myi,Mzi	capacity f	orces			rel rel	ative bearing	capacity						
ε-1,ε-2	strain at	outmost	effect	ive fibers	As long	gitudinal rei	nforcement	: per layer	•				
γ-c	safety fac	tor cor	ncrete		Lay. lay	er of reinfor	cement						
γ-s	safety fac	tor rei	Inforcer	nents									
ΔNi	longitudin	al ford	e creat	ed from the tr	uss model for	r shear and t	orsion						
∆Vyi,∆Vzi	change of	change of transverse shear due to tendon stress increase											
yn, zn	intersecti	intersection of neutral axis and local coordinate sytem											
e+,e-	distance c	of resul	lting co	ompressive and	tensile force	e to centroid							
z	allowable	value d	of the i	nternal lever	for the shear	r design (e.g	. influenc	e of cnom))				

Design Cross Section

Shear Design

Design for shear Eurocode EN 1992 (2004)

Mat	f-cd	τ-rd	σ-сν	σ-ct	σ-cv+t	f-yd						
	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]						
2	14.17	0.12	7.65	7.65	7.65							
3						434.78						
f-cd	design stre	design strength of concrete										
τ-rd	design valu	e of the shear	capacity of t	he concrete								
σ-сν	maximum all	owable compres	sive stress fo	or transverse s	hear							
σ-ct	maximum all	maximum allowable compressive stress for torsional shear										
σ-cv+	t maximum all	maximum allowable compressive stress										
f-yd	design stre	ngth of shear	links									

Minimum shear factor or tan of inclination of compressive struts 0.40 / 1.00 Tolerance for exceeding maximum shear or principal compression stress 0.0200

Maximum Utilisation Level

		N	Vy	Vz	Му	Mz	Mtp	Mts	Mb	Ncr	SCL	Total
		σ- x	σ+x	τ	σ-ν	σ-s	σ-dyn	As-l	As-v	crack	c/t	
Sectio	n 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	-	0.859
SECTIC	N 1	0.000	0.000	0.000	0.000	-	-	-	-	-	-	
Total		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	-	0.859
		0.000	0.000	0.000	0.000	-	-	-	-	-	-	
N	normal force τ shear stress											
Vy,Vz	shear force		σ-	v von M	ises stres	s						
My,Mz	bending		σ-	s stres	s in reinf	orcements						
Mtp,Mts	torsion (p)rimary and	(s)econdary	γ σ-	dyn stres	s range							
Mb	warping moment		As	-l longi	tudinal re	inforcemen	nts					
Ncr	flexural buckling	-v shear	link reir	forcements	5							
SCL	cross-section class		cr	ack crack	width							
σ-x	longitud. compressive	stress	c/	t stres	s dependar	t utilisat	ion level	(see AQB	Manual 2.3	.2)		
σ+x	longitud. tensile stress Total most unfavorable utilisation for all checks											

Page 10

SOFISTIK AG - www.sofistik.de

SOFiSTiK Hellas S.A.

X Y Z

SOFiSTiK Hellas S.A.	Page 11
SOFISTIK 2016 RESULTS - OUTPUT FOR FINITE ELEMENTS (V 14.00)	2017-08-10

Linear axial stress

Linear axial stress

